Social disorganization theories and systemic reformulations provide some of the most compelling and enduring explanations for the development, persistence, and geographic distribution of gang behaviors. Since Thrasher’s (1927) seminal study, generations of researchers have conceived of gangs and gang behaviors as the product of social dislocations associated with urban life, including poverty, social immobility, ethnic conflict, and economic isolation. The systemic model of gang behavior offered by Bursik (2002; Bursik and Grasmick 1993) extends these theories by focusing on the regulatory capacities found in the social networks of neighborhood residents—that is, neighborhood social disorganization disrupts resident networks that would otherwise provide the capacity for the social control of street gang behaviors. Unfortunately, as applied to gangs, these theories remain to be empirically tested—less because of theoretical rigor than because of the lack of appropriate data.

Despite of the strong theoretical tendency to attribute gang behaviors to neighborhood characteristics and processes, few studies have systematically measured or tested such claims. The present study seeks to rectify this shortcoming by combining neighborhood-level survey data from the Project on Human Development in Chicago Neighborhoods with detailed homicide records to test some of the central hypotheses concerning the influence of neighborhood-level processes on gang behaviors, in this case homicide. By integrating theoretical advancements made in the neighborhood effects literature with research on street gang behavior, this study focuses on how neighborhood-level processes...
like social control and collective efficacy are related to gang versus nongang
homicide.

**Social Disorganization and Street Gangs**

Sociological research generally offers structural explanations of the etiology,
persistence, and geographic distribution of gangs, the most compelling of which
are social disorganization theory and its various manifestations.¹ Work by
early Chicago school scholars established this tradition by defining the gang in
relation to the ecological processes of disorganization and reorganization: The
gang is a geographically, temporally, and socially “interstitial” group that forms
in response to the disintegration of norms and customs and the consequential
weakening of social institutions and mechanisms of social control (Park and
Burgess 1924; Shaw and McKay 1942; Thrasher 1927). Thrasher’s view still
provides the bedrock of much of our theoretical understanding of gangs:

Gangs represent the spontaneous effort of boys to create a society for themselves
where none adequate to their needs exist. . . . The failure of normally directing and
controlling customs and institutions to function efficiently in the boy’s experience
is indicated by disintegration of family life, inefficiency of schools, formalism
and externality of religion. . . . All these factors enter into the picture of the moral
and economic frontier, and, coupled with deterioration in housing, sanitation, and
other conditions of life in the slum, give the impression of general disorganization
and decay. The gang functions with reference to these conditions in two ways:
It offers a substitute for what society fails to give. . . . It fills a gap and affords an
escape. . . . Thus the gang, itself a natural and spontaneous type of organization
arising through conflict, is a symptom of disorganization in the larger social
framework (12–13).

The work of Shaw and McKay advances the social disorganization under-
standing of gangs by formalizing the argument that gangs are a product of social
immobility, ethnic heterogeneity, and low economic status (Shaw and McKay
1942). These factors disrupt the normative foundation that permits effective
social control, thereby fostering a state of “social disorganization,” or the in-
ability of a community structure to realize common values of its residents and
maintain effective social control (Bursik 1988; Kornhauser 1978; Sampson and
Groves 1989). The extension of social disorganization theory to gang behaviors
is straightforward: Gangs arise either to take the place of weak social institu-
tions in socially disorganized areas, or because weak institutions fail to thwart
the advent of unconventional value systems that often characterize street gangs.
William Julius Wilson’s (1987) “underclass” perspective of gang research
coincides with its social disorganization predecessor by focusing on structural
Neighborhood Effects on Street Gang Behavior

aspects of the city, but it differs by asserting that unique changes in the post-Fordist economy have increased the importance of gangs in underclass neighborhoods (e.g., Hagedorn 1988; Venkatesh 1997). Venkatesh aptly summarizes this perspective:

These [underclass] researchers argue that the contemporary street gang is a product of postwar systemic factors that have deleteriously affected the economic and institutional fabric of inner cities. Specifically, the gang partially fills the void left by other community-based institutions. Adaptation is the central trope . . . for underclass researchers to explain a range of phenomena: for example, the gang can be a substitute for poorly functioning familial structures; its value orientation offers a moral chart for those youths excluded from mainstream cultural systems (89, emphasis in original).

The main critique of social disorganization is that these theories were largely developed at a time when an abundant supply of manufacturing jobs permitted social mobility among the lower classes and the ensuing aging-out of gang behaviors in favor of prosocial life-course outcomes, such as marriage, blue-collar employment, or military service (Bursik and Grasmick 1993; Fagan 1996). The decimation of the manufacturing and industrial labor sectors of the economy generated new gang forms, particularly “drug” and “corporate” gangs, which arise as quasipermanent social institutions to mitigate some of the social dislocations associated with underclass neighborhoods.²

Bursik and Grasmick’s (1993) systemic model emphasizes the importance of relational networks to facilitate social control (see, e.g., Kasarda and Janowitz 1974). Rather than simply focusing on neighborhood characteristics such as social-economic status or ethnic heterogeneity, the systemic model stresses the mechanisms of social control, in particular the “regulatory capacities that are embedded in the affiliational, interactional, and communication ties of neighborhood residents” (Bursik 2002, 73–74). Accordingly, gang activity is likely to arise in neighborhoods, regardless of social class, where networks of private, parochial, and public control cannot effectively provide services to the neighborhood or regulate undesirable behaviors.

For all their theoretical appeal, social disorganization and underclass theories of gangs have received little empirical support, mainly because of data limitations. Qualitatively, most of the research on the relationship between street gangs and neighborhoods is descriptive in nature, relying largely on one-gang, one-neighborhood studies.³ From Whyte (1943) to Venkatesh (1997), ethnographic studies chronicle numerous examples of the dynamic relationship between neighborhood context and gang behaviors. Studies report that gang-neighborhood dynamics both hinder and foster various levels of social
Chapter 5

control (e.g., Anderson 1999; Jankowski 1991; Keiser 1969; Pattillo 1998; Suttles 1968; Venkatesh; Whyte). Anderson reports that the presence of gang members and drug dealers on public streets generates fear among residents, thereby weakening informal control (see also Lane and Meeker 2003; Skogan 1990). Whyte, Jankowski, Pattillo, and Venkatesh, however, all find that gangs and gang members are integrated into other neighborhood institutions, often providing useful, if only de facto, forms of social control, support, or economic opportunities. Such discrepancies are most often explained by temporal or contextual differences, which make it difficult to generalize theoretically. For example, the hyperorganized “corporate” and “drug” gangs described by Padilla (1992), Papachristos (2001), Taylor (1990a), and Venkatesh are attributed to the unique gang history and culture of the research site. In particular, gang research based on Chicago gangs is most often criticized for the city’s unique gang history.4 The dearth of multisite or multigang qualitative research further confounds the issue.

Although quantitative studies lend support for the general social disorganization model (e.g., Sampson and Groves 1989), application to gangs has not sparked the same methodological rigor or empirical testing. Studies consistently demonstrate that gangs and gang behaviors are more likely to be concentrated in poor and disorganized neighborhoods (Curry and Spergel 1988; Rosenfeld, Bray, and Egley 1999; Short and Strodtebeck 1965/1974; Spergel 1984). Unlike the more general tests of social disorganization theory, however, these studies do not directly measure any of the mechanisms of social control that are hypothesized to mediate gang behaviors. Rather, they rely on aggregate census data to describe neighborhood characteristics (e.g., Curry and Spergel; Rosenfeld, Bray, and Egley) or on samples of gang-involved youth to analyze patterns of offending (e.g., Esbensen, Huizinga, and Weiher 1993; Thornberry et al. 2003). The former attributes mechanisms of social control to the social-demographic characteristics of the neighborhood but lacks actual measures, survey or otherwise, of the informal networks that serve as means of control. The latter, by focusing on the gang member as the unit of analysis, ignores the neighborhood factors, or else fails to measure the mechanisms of neighborhood social control. The neighborhood effects literature provides a set of clear and testable hypotheses of social control mechanisms and processes that are consistent with the social disorganization and underclass theories of gang behaviors.

Neighborhood Effects, Collective Efficacy, and Gang Homicide

“Neighborhood-effects” research, where a neighborhood effect is defined as an emergent property of neighborhoods, net of neighborhood differences in
population composition (Cook, Shagle, and Degirmencioglu 1997; Leventhal and Brooks-Gunn 2000; Sampson, Morenoff, and Gannon-Rowley 2002), has its roots in early Chicago school theorizing on the influence of urban environments, but it stresses the social processes or mechanisms that act as engines for how neighborhoods influence a given phenomenon or behavior (Sampson, Morenoff, and Gannon-Rowley, 447). The common thread throughout this literature is that key dimensions—including social disorganization, concentrated disadvantage, and social inequality—affect a host of outcomes, including crime, school dropout, social disorder, and public health. The backdrop for much of this research is Coleman’s (1988) assertion that social capital is a form of social organization in which the structure of ties and relations between individuals makes possible certain actions, including social control. While the phrase social capital has come to take many meanings, the neighborhood-effects literature holds that these forms of social capital are situated in structures of social organization and are not simply the sum of individual or neighborhood characteristics (Coleman 1990, 302).

Sampson and colleagues (Sampson, Raudenbush, and Earls 1997) suggest that “collective efficacy” is a crucial mediating process that explains the relation between neighborhood structures and behavioral outcomes. Collective efficacy is a concept based on a combined measure of neighborhood informal social control, social cohesion, and trust. Sampson and colleagues (Sampson, Morenoff, and Earls 1999) argue that researchers must move beyond a reliance on social capital and density of social ties when examining the determinants of crime and social control. They describe social capital as a “resource potential,” but one that must be activated and utilized. Thus, collective efficacy refers to the process of activating or converting social ties to achieve any number of collective goals, such as public order or the control of crime.

Figure 5.1 outlines a basic theoretical model of the systemic social disorganization theory, with collective efficacy as the key mediating variable and gang behaviors as an outcome. This model is an extension and application of previous research demonstrating that collective efficacy mediates the structural effects of neighborhood disorganization on delinquency, crime, criminal victimization, observed disorder, and homicide (Morenoff, Sampson, and Raudenbush 2001; Sampson, Raudenbush, and Earls 1997). We hypothesize that collective efficacy operates similarly with respect to gang behaviors.

Through the use of neighborhood-level data that captures the mechanisms in figure 5.1, the goal of this chapter is to provide an empirical test of the general systemic social disorganization theory as it applies to gang behaviors, in this case gang-related homicide.
Data and Methodology

Data on neighborhood social processes come from the Project on Human Development in Chicago Neighborhoods (PHDCN) 1994–1995 Community Survey of 8,782 Chicago residents. There were 847 census tracts combined into 343 neighborhood clusters (NC) constructed to be “as ecologically meaningful as possible, composed of geographically contiguous census tracts, and internally homogeneous on key census indicators” (Sampson, Raudenbush, and Earls 1997, 919). Investigators surveyed respondents on neighborhood measures focused on levels of social organization (i.e., formal and informal social control, relationships and trust among neighbors) and criminal activity. Of particular importance is the measure of collective efficacy. Our measure of neighborhood collective efficacy replicates methods employed by Sampson, Raudenbush, and Earls and Morenoff, Sampson, and Raudenbush (2001) which combine a total of ten survey items that tap the constructs of social control and social cohesion/trust. Following Morenoff, Sampson, and Raudenbush, we also utilize empirical Bayes residuals of collective efficacy as an explanatory variable as a means of correcting for bias resulting from measurement error.

We utilize three measures of neighborhood structure: concentrated disadvantage, immigrant concentration, and residential stability. We hypothesize that concentrated disadvantage is positively associated with homicide because of the lack of institutional resources in disadvantaged communities and the lack of middle-class neighbors to serve as a “buffer” against poverty (Wilson 1987). In accordance with the social disorganization perspective, we hypothesize that immigration concentration is positively associated with homicide because of its influence on weakening social ties and institutions. Finally, we hypothesize
that residential stability is negatively related to crime, in that stability is conducive to the formation and maintenance of social networks. A total of ten indicators were combined via factor analysis to create these three measures (see appendix A for a list of items used to construct the various measures utilized in this analysis). Items used to construct factors scores are weighted by their factor loading (see appendix B for a table of the factor loadings).

Homicide data were obtained from records of all homicides in the city of Chicago. Data recorded at the incident level include demographic, geographic, motive, and gang information on both the offender and victim. Address information from each incident was used to geocode the location of the homicide to the corresponding neighborhood cluster. We rely upon the Chicago Police Department’s designation of gang motivation to determine if a homicide is gang-related. Definitions of gang-related homicide vary drastically across municipalities but can generally be categorized as “member-based” and “motive-based” definitions (for a review, see Maxson and Klein 1996). Member-based definitions, such as those used in Los Angeles, more broadly classify any homicide involving a gang member as gang-related. In contrast, more conservative motive-based definitions, such as those used in Chicago, classify a homicide as gang-related only if the crime itself was motivated by gang activity and, therefore, would be more commonly associated with group-level actions such as turf defense, drug dealing, or existing gang conflicts. So a homicide of one gang member by another gang member because of a personal dispute (e.g., the infidelity of a lover, intoxication) would be classified as gang-related by the former definition but not by the latter. The Chicago data used here adhere strictly to the conservative definition of gang-related.

The use of a conservative definition has a crucial advantage: It ensures that the actual reason for the homicide is a group reason, even though the actual event may simply entail the interaction between two individuals. That is, the homicide is motivated, and often preceded, by an extra-individual (gang) circumstance. The unit of analysis is the gang and not the gang member, as would be the case in the member-based definition. The drawback, however, is that the conservative definition tends to underestimate the total number of interactions. For the sake of precise definition of the interaction, we err on the side of conservatism.

Statistical Models

We model the number of homicides per neighborhood during 1995 as sampled from an overdispersed Poisson distribution. In all models, a random intercept term is included in order to examine the variability across neighborhoods in the homicide rate.
Chapter 5

Three sets of covariates are utilized in analyses, starting with a baseline model and moving toward a more inclusive model with the addition of relevant covariates. Three different dependent variables are examined with each set of covariates, thus producing a total of nine statistical models. The three dependent variables are: (1) total homicides per neighborhood in 1995, (2) gang-related homicides per neighborhood in 1995, and (3) non-gang-related homicides in 1995. Model 1 is the baseline model, with homicide as the outcome and three neighborhood structural characteristics (Concentrated Disadvantage, Immigrant Concentration, and Residential Stability) as covariates. Models 2 and 3 expand upon the baseline model with the addition of Collective Efficacy, and then a control for prior homicide in each neighborhood (pooled from 1991 to 1993). Similar to previous studies, it is hypothesized that collective efficacy is negatively related to homicide.

Results

Tables 5.1 and 5.2 present a descriptive summary of homicides in Chicago during 1995, with table 5.1 illustrating the racial distribution of homicide. In table 5.1, it can be seen that a vast majority of 1995 homicides had black victims. It is also noteworthy that 21 percent of homicides with black victims were gang-related, while 46 percent of Hispanic homicides were gang-related. Furthermore, while there were roughly twice as many black gang homicides as Hispanic gang homicides (130 versus 65), there were nearly six times as many black nongang homicides as Hispanic.

Table 5.2 presents the average characteristics of the neighborhoods in which these homicides occurred. At least one homicide was reported in 244 of Chicago’s 343 neighborhoods. At least one gang homicide occurred in 121 neighborhoods, and at least one nongang homicide occurred in 223 neighborhoods. Compared to neighborhoods with no homicides reported, on average, homicides occurred in neighborhoods with greater levels of concentrated disadvantage, less immigrant concentration, less residential stability, and greater

| 1995 Gang Homicides by Race and Ethnicity (percentages in parentheses) |
|----------------------|------------------|------------------|------------------|
|                      | All Homicides 1995 | Black Homicides  | Hispanic Homicides | Other Race/Ethnic Homicides |
| Total                | 815              | 611              | 141              | 63                    |
| Gang                 | 205 (25.2)       | 130 (21.3)       | 65 (46.1)        | 10 (15.9)             |
| Nongang              | 610 (74.8)       | 481 (78.7)       | 76 (53.9)        | 53 (84.1)             |
### TABLE 5.2

<table>
<thead>
<tr>
<th></th>
<th>All of Chicago</th>
<th>No Homicides</th>
<th>Total Homicides</th>
<th>All Gang Related</th>
<th>Top 50 Gang Related</th>
<th>All Nongang Related</th>
<th>Top 50 Nongang Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (# of Neighborhoods)</td>
<td>343</td>
<td>99</td>
<td>244</td>
<td>121</td>
<td>50</td>
<td>223</td>
<td>50</td>
</tr>
<tr>
<td>Sum of Homicides, 1995</td>
<td>815</td>
<td>0</td>
<td>815</td>
<td>205</td>
<td>134</td>
<td>610</td>
<td>309</td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>0</td>
<td>−0.581</td>
<td>0.236</td>
<td>0.358</td>
<td>0.470</td>
<td>0.294</td>
<td>1.058</td>
</tr>
<tr>
<td>Immigrant Concentration</td>
<td>0</td>
<td>0.146</td>
<td>−0.059</td>
<td>0.016</td>
<td>1.097</td>
<td>−0.116</td>
<td>0.778</td>
</tr>
<tr>
<td>Residential Stability</td>
<td>0</td>
<td>0.030</td>
<td>−0.015</td>
<td>−0.119</td>
<td>−0.100</td>
<td>0.009</td>
<td>0.154</td>
</tr>
<tr>
<td>Proportion Black</td>
<td>41.1</td>
<td>13.2</td>
<td>52.4</td>
<td>53.5</td>
<td>57.0</td>
<td>56.1</td>
<td>93.5</td>
</tr>
<tr>
<td>Proportion White</td>
<td>35.3</td>
<td>63.5</td>
<td>23.8</td>
<td>19.8</td>
<td>13.0</td>
<td>21.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Proportion Hispanic</td>
<td>19.8</td>
<td>17.4</td>
<td>20.8</td>
<td>24.1</td>
<td>28.3</td>
<td>19.5</td>
<td>4.1</td>
</tr>
</tbody>
</table>
concentrations of black residents. Homicides also occurred, on average, in neighborhoods with relatively lower levels of collective efficacy. Rank correlations (Spearman’s rho), which rank Chicago neighborhoods according to their homicide count, provide one means of examining the association between collective efficacy and the different types of homicides. The correlation between gang homicide and collective efficacy equals –0.273, while correlation between nongang homicide and collective efficacy equals –0.455. As another means of examining the relation between collective efficacy and homicide, figure 5.2 plots the pattern of association in the raw data with a smoothed line graph. This figure again illustrates that the association between collective and homicide is negative, albeit a flatter association for gang homicide.

Table 5.2 also displays the average neighborhood characteristics of those neighborhoods in Chicago with any gang and nongang homicides in 1995, and the characteristics of neighborhoods where gang and nongang homicides are heavily concentrated. Fifty neighborhoods account for 134 out of the 205 gang homicides (approximately 65 percent), and fifty neighborhoods account for 309 out of the 610 nongang homicides (approximately 51 percent). Fifteen of the top fifty neighborhoods of gang homicides also ranked in the top forty neighborhoods in the number of nongang homicides. This relationship holds in the ecological patterning of neighborhoods as well.

Figure 5.3 displays maps of nongang homicides compared with gang homicides at the police beat level. While nongang homicides are experienced over a large number of police beats, the heaviest concentration occurs on the south
and west sides of the city. Gang homicides are much more sparsely distributed throughout the city but are also heavily concentrated on the south and west sides. Neighborhoods highest in gang homicides are not always the same as those highest in nongang homicides, however. It is not the case that all high homicide areas experience a gang problem. Also, several neighborhoods experience a gang homicide but not a nongang homicide; gang homicides almost entirely drive the murder rate in these neighborhoods.

The association between the police beat count of gang and nongang homicides in 1995, as measured by Spearman’s rho, equals 0.309. Using the homicide rate per 100,000 neighborhood residents in the correlation instead of counts, rho equals 0.291. These findings suggest that there may be differences in structural characteristics and social processes such as collective efficacy between neighborhoods with gang homicides and those with nongang homicides. Disentangling these differences is one central objective of our regression models.

Table 5.3a attempts to replicate Sampson, Raudenbush, and Earls (1997), and finds very similar results. Comparing models 1 and 2 in table 5.3a, it can be seen that the addition of collective efficacy partially mediates the effect of concentrated disadvantage on homicide. In model 3, results show that concentrated disadvantage and residential stability are positively associated with the
### TABLE 5.3a

<table>
<thead>
<tr>
<th>Model</th>
<th>Coef</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.619***</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>0.647</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>0.057</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>0.138***</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>0.159***</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>0.034</td>
<td>0.002</td>
</tr>
</tbody>
</table>

**Chapter 5**
expected homicide rate, and that immigrant concentration is unrelated to the total homicide rate. Collective efficacy is negatively related to homicide, even after controlling for prior homicide.

Table 5.3b displays results of analyses of nongang homicides. Here the strength and direction of association between covariates and nongang homicide are similar to those found with total homicides. Whereas homicides and immigrant concentration are unrelated to total homicides, however, nongang homicides are strongly negatively related to immigrant concentration. Recall that the immigrant concentration variable is based on the percentage of Latino and the percentage of foreign-born residents in a given neighborhood, and that it is expected that greater heterogeneity of ethnic groups make more problematic the maintenance of informal neighborhood social control, thus leading to greater levels of crime. In this case however, empirical results point to the opposite.

Moving to results in table 5.3c, similar to nongang homicide, results show that the strength and direction of association between covariates and gang homicide are largely similar to those found for total homicides. However, now there is a weak positive relation between immigrant concentration and gang homicide (p-value = 0.073 in model 2 and 0.107 in model 3). What seems to be happening when aggregating to total homicides is that the positive association between gang homicides and immigrant concentration is offset by the strong negative association between nongang homicides and immigrant concentration.

That said, we find that collective efficacy mediates the effect of concentrated disadvantage on each of the three dependent variables, as well as the effect of immigrant concentration, particularly for nongang homicides.

Discussion

As hypothesized, we found that neighborhood social processes, in this case collective efficacy, mediate the effects of some of the structural features of neighborhoods. Furthermore, we conclude that collective efficacy operates similarly on violent gang behavior as it does on other forms of violent behavior.

We hypothesized that greater immigration and heterogeneity of ethnic groups would make it more problematic to maintain informal neighborhood social control and lead to greater levels of crime, but found the opposite for nongang homicides. Martinez (2002) offers one explanation for the benefit of immigration, arguing that immigration may actually strengthen communities by replacing population loss and because strong ties to the family and labor market offset negative consequences associated with poverty and disruption of ties.

Another explanation that diverges from social disorganization accounts of violence is that immigrant concentration may be disruptive of homicide in certain urban areas but positively related to homicide in still other areas. As
<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>Std Err</td>
<td>Coeff</td>
</tr>
<tr>
<td>Constant</td>
<td>2.885***</td>
<td>0.048</td>
<td>2.856***</td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>0.687***</td>
<td>0.050</td>
<td>0.511***</td>
</tr>
<tr>
<td>Immigrant Concentration</td>
<td>−0.199***</td>
<td>0.052</td>
<td>−0.233***</td>
</tr>
<tr>
<td>Residential Stability</td>
<td>0.085**</td>
<td>0.043</td>
<td>0.169***</td>
</tr>
<tr>
<td>Collective Efficacy</td>
<td>−1.098***</td>
<td>0.263</td>
<td>−1.133***</td>
</tr>
<tr>
<td>Nongang Homicide Rate, 1991–1993</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 5.3c
CPD Gang Homicide, 1995

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
<th>Model 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>Std Err</td>
<td>Coeff</td>
<td>Std Err</td>
<td>Coeff</td>
<td>Std Err</td>
</tr>
<tr>
<td>Constant</td>
<td>1.928***</td>
<td>0.071</td>
<td>1.904***</td>
<td>0.075</td>
<td>1.898***</td>
<td>0.075</td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>0.561***</td>
<td>0.055</td>
<td>0.402***</td>
<td>0.083</td>
<td>0.345***</td>
<td>0.088</td>
</tr>
<tr>
<td>Immigrant Concentration</td>
<td>0.186*</td>
<td>0.088</td>
<td>0.150</td>
<td>0.083</td>
<td>0.128</td>
<td>0.079</td>
</tr>
<tr>
<td>Residential Stability</td>
<td>−0.003</td>
<td>0.075</td>
<td>0.073</td>
<td>0.082</td>
<td>0.055</td>
<td>0.083</td>
</tr>
<tr>
<td>Collective Efficacy</td>
<td>−0.994**</td>
<td>0.389</td>
<td>−0.884**</td>
<td>0.384</td>
<td>0.014**</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Gang Homicide Rate, 1991–1993

* = .05; ** = .01; *** = .001
Lee and colleagues (Lee, Martinez, and Rosenfeld 2001) suggest, immigrants residing in predominately black neighborhoods may be too few to provide the positive benefit from immigration noted above and therefore are consistent with the potentially negative consequences suggested by early social disorganization theorists (e.g., Long 1974; Shaw and McKay 1942).

Table 5.1 indicates that almost half of Hispanic homicides were gang related, while less than one-quarter of black homicides were gang related. Table 5.1 also shows that the ratio of black to Hispanic gang homicides is roughly two to one, but the ratio for nongang homicides is roughly six to one. Because most nongang homicides involve black victims and occur in areas heavily populated by blacks, nongang homicides in table 5.3b reflect the overall nature of black homicide. Blacks in Chicago typically live in areas with few immigrants, and this is particularly true in areas susceptible to high levels of homicide involving black victims. Areas of Chicago with the greatest number of immigrants, correspondingly, have comparatively low levels of black violence. This may account for the negative correlation between homicide and immigrant concentration in our analysis of nongang homicides. In other words, because homicide victimization of blacks dwarfs that of all other ethnic groups, and black victimization occurs in areas with few Hispanics and foreign-born individuals, it appears that there is a negative relation between black violence and immigrant concentration.

However, the influence of immigrant concentration operates differently in Hispanic neighborhoods. Figures 5.4 and 5.5 graphically illustrate these points,
FIGURE 5.5
Homicides in Chicago by Immigrant Concentration and Gang Motivation, 1995

with plots of the relationship between homicide and immigrant concentration. Figure 5.4 shows a positive association between Hispanic homicide and immigrant concentration, as suggested by social disorganization theorists. For black homicides, there is a rise and a sharp decline in the relationship between homicide and immigrant concentration. However, there are very few black homicides in neighborhoods with high levels of immigrant concentration. This finding occurs because there are actually very few blacks, and therefore very few potential black homicide victims, in areas with high immigrant concentration. Figure 5.5 confirms the point suggested before, that most non-gang homicides involve black victims, and the association between nongang homicide and immigrant concentration actually reflects the nature of the relationship between black homicide and immigrant concentration. Thus, the original hypothesis concerning the negative repercussions of ethnic heterogeneity may still hold some value, but the effect may not be uniform across differing neighborhood types. Further research is needed to explore this particular hypothesis and the similarity of neighborhood effects across ethnic groups more generally.

One important caveat is worth noting. Our present models, unfortunately, do not include any measure of the spatial effects of homicide (e.g., Morenoff, Sampson, and Raudenbush 2001; Rosenfeld, Bray, and Egley 1999). Such factors should be seriously considered in future research on gangs and neighborhood effects, especially given the geographic concentration of gang violence.
Chapter 5

Preliminary analyses by the authors using spatial econometric models suggest that the findings presented here hold when considering the spatial dependency of homicide (Kirk and Papachristos 2005).10

Conclusion

Seventy-five years after Thrasher’s (1927) seminal work, critical questions remain: How do gangs facilitate social behaviors? How do gangs react to and influence their social contexts? And how do different neighborhood contexts produce gang behaviors? One way to address such a research agenda, as with the advancement of social science in general, is to apply a methodological or theoretical approach found in other areas of social research to the phenomena in question to discover similarities, differences, or other intriguing patterns. The recent developments in the neighborhood-effects literature provide one such avenue of inquiry. The present study finds general support for the systemic model of gang behavior, in that informal mechanisms of social control significantly lower the level of lethal gang violence. However, disaggregating analyses by gang versus nongang homicides clarify some of these processes, revealing relevant issues for future research on gangs and neighborhoods.

Neighborhoods with high levels of violence are not necessarily the same neighborhoods that have high levels of gang violence. Both types of neighborhoods are similar in regards to structural characteristics, such as concentrated disadvantage and residential mobility, as well as their levels of collective efficacy and informal social control. But what, then, predicts why a particular neighborhood experiences a gang problem? If social disorganization theory operates the same with respect to gang behavior as it does for deviance more generally, what factors explain why some disorganized neighborhoods give rise to gang violence, while others with similar structural features do not? Immigrant concentration appears to be one such factor; neighborhoods that have a high rate of gang homicide without a corresponding high rate of nongang homicide are characterized by high levels of immigrant concentration.

Analyses disaggregated by gang motivation show that concentrated immigration is a more complex factor in social disorganization models than previously suggested in either the gang or the neighborhood-effects literature. The effect of immigrant concentration on nongang homicides is negative, essentially yielding the opposite result of that predicted by the social disorganization model. However, the effect of immigrant concentration is positive for gang homicides, in large part because of the large portion of Hispanic homicides that are gang-related. Thus, gang homicide more closely follows the classic
social disorganization predictions than do nongang homicides, due to the larger number of gang homicides committed in neighborhoods with high immigrant concentration. This finding is consistent with Curry and Spergel’s (1988) analysis, which shows that black gang homicides tend to follow the “underclass” hypotheses, while Hispanic gang homicides follow more traditional social disorganization hypotheses.

Perhaps the most important question that follows from this discussion is why neighborhoods with high levels of immigrant concentration tend to have high levels of lethal gang violence but not high levels of nongang lethal violence? What is it about neighborhoods with concentrated immigration that leads to specific types of violence? Future research, especially comparative studies, should try to better understand what it is about immigrant neighborhoods that generate gang violence and how such factors are different in nonimmigrant neighborhoods that also experience gang problems. Analyses disaggregated by race and gang motivation seem clearly to be necessary for this purpose.

These findings provide direction for future research on gangs and neighborhoods. On the one hand, gang research would be well served by integrating methodological and theoretical developments of neighborhood research, specifically focusing on structure and process rather than merely on outcomes. As decades of qualitative research has demonstrated, gangs are and continue to be key actors in (and not just outcomes of) processes of control. Gang research should try to better understand how gangs are integrated into neighborhood-level social networks, using multiple methods of investigation and theoretical perspectives. Conversely, neighborhood research can benefit greatly by giving more consideration to the role of gangs in neighborhood-level processes. Analyses here show that while collective efficacy mediates gang violence, it does not fully explain why some neighborhoods experience a gang problem, while similar neighborhoods do not. Thus, ignoring gangs in the study of neighborhood social control overlooks not only significant deviant behaviors in many neighborhoods but also potential actors in networks of social control. Integrating the study of gangs with the study of neighborhoods may explain some of these differences, especially with respects to mechanisms of social control.

Appendix A: Construction of Neighborhood Measures

Aggregate measure I is developed from individual responses to the 1994–1995 PHDCN Community Survey, and Measures II–IV are developed from responses to the 1990 decennial census.
Chapter 5

I. Collective Efficacy

A. Social Cohesion and Trust: “Strongly agree, agree, neither agree nor disagree, disagree, strongly disagree.”
   i. This is a close-knit neighborhood.
   ii. People around here are willing to help their neighbors.
   iii. People in this neighborhood can be trusted.
   iv. People in this neighborhood generally don’t get along with each other (reverse coded).
   v. People in this neighborhood do not share the same values (reverse coded).

B. Informal Social Control: “Would you say it is very likely, likely, neither likely nor unlikely, unlikely, or very unlikely” that people in neighborhood would intervene:
   i. If a group of neighborhood children were skipping school and hanging out on a street corner.
   ii. If some children were spray-painting graffiti on a local building.
   iii. If a child was showing disrespect to an adult.
   iv. If there was a fight in front of your house and someone was being beaten or threatened.
   v. Suppose that because of budget cuts the fire station closest to your home was going to be closed down by the city. How likely is it that neighborhood residents would organize to try do something to keep the fire station open?

II. Concentrated Disadvantage: Proportion of Population in Neighborhood Cluster

A. Below poverty line
B. On public assistance
C. Female-headed families
D. Unemployed
E. Less than age 18
F. Black

III. Immigrant Concentration: Proportion of Population in Neighborhood Cluster

A. Latino
B. Foreign-born

IV. Residential Stability: Proportion of Population in Neighborhood Cluster

A. Same house as in 1985
B. Owner-occupied house
Appendix B: Oblique Rotation Factor Loadings,
Neighborhood Structure Measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Concentrated Disadvantage</strong></td>
<td></td>
</tr>
<tr>
<td>Below poverty line</td>
<td>0.93</td>
</tr>
<tr>
<td>On public assistance</td>
<td>0.94</td>
</tr>
<tr>
<td>Female-headed families</td>
<td>0.93</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.86</td>
</tr>
<tr>
<td>Less than age 18</td>
<td>0.94</td>
</tr>
<tr>
<td>Black</td>
<td>0.60</td>
</tr>
<tr>
<td><strong>Immigrant Concentration</strong></td>
<td></td>
</tr>
<tr>
<td>Latino</td>
<td>0.88</td>
</tr>
<tr>
<td>Foreign-born</td>
<td>0.70</td>
</tr>
<tr>
<td><strong>Residential Stability</strong></td>
<td></td>
</tr>
<tr>
<td>Same house as in 1985</td>
<td>0.77</td>
</tr>
<tr>
<td>Owner-occupied house</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Source: Data from the 1990 census.

Notes

This research was supported in part by National Science Foundation grant SES-021551 to the National Consortium on Violence Research (NCOVR). The Project on Human Development in Chicago Neighborhoods was conducted with support of the John D. and Catherine T. MacArthur Foundation, the National Institute of Justice, and the National Institute of Mental Health. We thank the editors, Bob Bursik, Jeff Fagan, Tracey Meares, and Rob Sampson for helpful comments on earlier drafts of this chapter. Any findings or conclusions expressed are those solely of the authors.

1. For a review, see Bursik and Grasmick (1993) or Kornhauser (1978). Subcultural approaches to gang behaviors (e.g., Cohen 1955; Miller 1958) are not discussed here, due to space limitations.

2. Both the social disorganization and underclass approaches focus mainly on the lower echelons of the stratification system, thus ignoring the development of gangs in stable, middle-class neighborhoods, let alone the recent proliferation of gang problems in suburban and rural areas (see Bursik and Grasmick 1993; Klein 1995a). The systemic model discussed below is one approach to solving this problem.

3. Short and Strodtbeck (1965/1974), Jankowski (1991), and Hagedorn (1988) are the most striking exceptions to the one-gang, one-neighborhood ethnographic standard.

5. Data were provided by the Chicago Police Department’s Division of Research and Development. The analysis of the data reflects the findings and opinions of the authors and in no way represents the views of the Chicago Police Department or the city of Chicago.

6. Ultimately, the investigating detectives make the decision as to whether a homicide is gang-related. While homicide data are not the most ideal source of gang data, to the best of our knowledge there exists no systematic neighborhood-level survey of gangs or gang members comparable to the PHDCN. Arguably homicide data are the most reliable sources of crime data, especially given the resources used to investigate each case and maintain records.

7. This underestimation is relative. With an average of 182 gang-related homicides a year over the past ten years, the conservative definition in Chicago provides an adequate sample size for most statistical methods.

8. The visual differences in the slopes in figure 5.2 are a matter of scale—there are simply more nongang homicides. No statistically significant difference in the slopes exists.

9. One of the comments we received on an earlier version of this paper is that this finding might reflect how we have measured immigrant concentration. To assess the validity of this critique, we performed analyses using an alternative specification of immigrant concentration, based on the census measure of percent foreign born in 1990, as opposed to a combined measure of percent foreign born and percent Latino. Inferences are the same regardless of which measure of immigrant concentration is used.

10. These preliminary models are available directly from the authors.