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Even the simplest environmental stimuli elicit responses in large populations of neurons in early sensory cortical areas. How these

distributed responses are read out by subsequent processing stages to mediate behavior remains unknown. Here we used voltage-

sensitive dye imaging to measure directly population responses in the primary visual cortex (V1) of monkeys performing a

demanding visual detection task. We then evaluated the ability of different decoding rules to detect the target from the measured

neural responses. We found that small visual targets elicit widespread responses in V1, and that response variability at distant

sites is highly correlated. These correlations render most previously proposed decoding rules inefficient relative to one that uses

spatially antagonistic center-surround summation. This optimal decoder consistently outperformed the monkey in the detection

task, demonstrating the sensitivity of our techniques. Overall, our results suggest an unexpected role for inhibitory mechanisms

in efficient decoding of neural population responses.

A fundamental feature of mammalian cerebral cortex is its use of
orderly topographic maps to represent sensory and motor informa-
tion1–3. Because cortical neurons tend to respond to a broad range of
stimuli4 or movements5, and because there are generally multiple
neurons tuned to the same range of parameters within one cortical
column6,7, even the simplest sensory stimulus or motor response elicits
activity that is distributed over a substantial population of neurons5,8,9.
Electrophysiological studies in behaving primates suggest that percep-
tual and motor responses are indeed mediated by populations of
neurons rather than by single neurons10–13. These observations raise
several fundamental questions: how are stimuli and movements
encoded by neural population responses, what are the optimal strate-
gies for decoding (pooling) the population responses, and how efficient
are different non-optimal pooling strategies?

Several models of neural pooling in the brain have been pro-
posed11,14–19. These include monitoring only the most sensitive neu-
rons (at the extreme, a single neuron)16, simple averaging over the
active neural population11 and weighted summation, where the
contribution of each neuron in the pool is proportional to its
sensitivity17 or proportional to the parameter value at the peak of its
tuning function14,15,18,19.

Importantly, evaluating these and other decoding rules has been held
back because of limited experimental techniques for reliably monitor-
ing neural population responses. Optical imaging with voltage-sensitive
dyes (VSD) measures neural population responses at high spatial and
temporal resolutions20. Only recently, however, has this technique been
applied successfully to behaving animals21,22. In the current study, we
use for the first time VSD imaging in behaving monkeys to investigate
possible decoding rules for population responses in V1.

RESULTS

Experimental design

Two monkeys were trained to detect a small oriented visual target,
indicating target presence by making a saccadic eye movement to the
target location as soon as it was detected (Fig. 1a). While the monkeys
performed this task, VSD imaging was carried out through a cranial
window over V1 (Fig. 1b). Performance in the detection task is likely to
depend on neural signals provided by topographic maps in V1 that can
be directly identified by optical imaging23–25. Because V1 is retino-
topically organized, information regarding the presence or absence of
the target is confined to several square millimeters of cortex within V1.
Optical imaging allows us to localize this cortical region precisely and
visualize the pattern of population activity within this entire region, in
real-time, as behavior unfolds. Furthermore, in primates, V1 provides
the main source of visual information to other cortical areas, and thus,
optical imaging may allow us to visualize most of the information that
is potentially available to subsequent processing stages in our task.
However, because VSD signals are likely to be dominated by subthres-
hold synaptic activity, it is possible that some of this information is not
transmitted from V1.

To evaluate the efficiency of possible decoding mechanisms and
to determine the optimal Bayesian decoding strategy, we began
by analyzing in detail the statistical properties of neural popu-
lation responses.

Statistical properties of V1 population responses

The major goal in this study was to determine how target-related neural
population responses in V1 could be pooled by subsequent processing
stages in order to mediate visual detection. The efficiency of a pooling
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method depends on three key properties of V1 population responses:
(i) the amplitude and spatial spread of the response, which determines
the size of the neural population that could contribute to detection;
(ii) the variability of the population response, which influences the
quality of the signals provided by neurons at each imaging site (a single
pixel or a binned group of pixels); and (iii) the magnitude and extent of
spatial correlations in response variability, which can have a large

impact on the gain that can be attained by pooling14,26–29. Our first step
was to examine these three key properties of V1 responses.

High-quality VSD responses were recorded in eight experiments
(recording sessions) from V1 in two monkeys. We use the results from
one VSD experiment as an illustrative example (Fig. 2). The
VSD response in a small V1 region that corresponds to the target
location increased rapidly shortly after stimulus onset (Fig. 2a).
Response amplitude decreased and response latency increased as target
contrast was reduced (Fig. 2b, thick lines). Target-evoked responses
could easily be seen in individual trials (Fig. 2b, thin green lines),
indicating that population responses in this small V1 region were
highly reliable.

Spread of V1 population response

To quantify the amplitude of the VSD response in single trials, the
average response was computed for each site in the imaged area over a
short interval following the onset of the neural response and prior to the
behavioral response (see Methods). The neural response to the small
target increased with contrast and extended over an area of several
square millimeters (Fig. 2c, left column), indicating that a large
population of V1 neurons carries target-related signals that could be
used by the monkey to detect the target. Consistent with previous
studies demonstrating anisotropy in the map of visual space in V1, the
response to the target was anisotropic, with the long axis of the response
oriented parallel to the V1/V2 border along the lunate sulcus8,30.
Average response across all target contrasts (Fig. 2d) was well fitted
by a two-dimensional (2D) Gaussian with a standard deviation along
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Figure 1 Behavioral task and recording chamber. (a) Task and stimulus

(see Methods). (b) The cranial window over V1 in the left hemisphere in

one monkey. The cortex is seen through a transparent artificial dura44.

A typical imaged area of 10 � 10 mm is indicated by the black square.

Figure 2 Neural population responses in V1 to a

Gabor target (see Methods) measured with VSD

imaging in one experiment. Gabor target

parameters: s ¼ 0.331, spatial frequency ¼
1.4 c.p.d., eccentricity ¼ 2.71. (a) Average time

course of VSD responses. Response was measured

in a small region of 0.25 � 0.25 mm, centered

at the location of the small circle in c, bottom

panels. Time courses are averaged across

repetitions (n ¼ 10 for each target contrast for

target-present trials; n ¼ 50 for target-absent

trials). For display purposes, the average time

course in target-absent trials is subtracted from
each curve. Note that the animal was allowed to

saccade to the target as soon as it was detected.

Arrows indicate median reaction times at target

contrasts in which at least three saccades were

made. At high target contrasts, reaction times

were short, leading to an early drop in the VSD

response. (b) Single-trial time courses (thin lines)

in the first 200 ms after target onset. The average

time courses for each condition are shown in thick

lines. (c) Spatial distribution of response

amplitudes (left column) and response sensitivity

(right column) for different target contrasts. Top

right panel, image of cortical vasculature. To

compute response amplitude, the response at

each site is time averaged during a short interval

after target onset and then averaged across

repetitions (see Methods). Response sensitivity is

measured as the signal-to-noise ratio d 0 (see text).
Red squares in the bottom panels indicate the

8 � 8 mm ROI used for further data analysis. The circle indicates the site with maximal d 0. Non uniform responses at 0% contrast (top left panel) represent

residual noise in the mean response around large blood vessels. (d) Response amplitude in target-present trials averaged across all target contrasts after

subtraction of the mean response in target-absent trials. (e) Two-dimensional Gaussian fit to the average response in d. (f) Average spatial correlations between

pairs of sites as a function of their separation. To eliminate the effect of target contrast on spatial correlations, the average response (across repetitions) for

each condition was first subtracted from the response in each trial before computing the correlations between the residual responses.
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the major axis (smaj) of 1.97 mm, and along the minor axis (smin) of
1.34 mm (Fig. 2e). Although response amplitude depended strongly on
target contrast, the spatial profile of the response was not significantly
affected by contrast (Supplementary Fig. 1 online).

The extent of spatial spread varied somewhat across experiments
(smaj ¼ 2.20 ± 0.07 mm, smin ¼ 1.54 ± 0.13 mm, n ¼ 8; values are
given as mean ± s.e.m.). Because VSD responses are thought to be
dominated by subthreshold activity20, the spread of spiking activity in
V1 may be more limited. Control analysis demonstrated that the large
spread was not due to variability in eye position (Supplementary Fig. 2
online). Thus, our results show that a large population of V1 neurons,
encompassing several square millimeters of cortex, carries information
regarding the presence or absence of the target in our task.

Reliability of V1 population responses

The reliability of neural population responses depends on their
variability across trials. A common measure of reliability is the
signal-to-noise ratio d 0, which is based on signal detection theory31:

d 0 ¼ ES � ENj j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsSÞ2 + ðsNÞ2

2

s
;

where ES represents the mean amplitude of the response in target-
present trials (signal trials), EN represents the mean amplitude of the
response in target-absent trials (noise trials) and sS and sN represent
the corresponding standard deviations.

We find that sS does not increase with stimulus contrast and is not
significantly different from sN (Supplementary Fig. 3 online). This is
surprising because in single cortical neurons, the variance of the spike
count during a short interval is proportional to the mean17,32. However,
as described in the next subsection, the relationship of the mean and

the variance of the response can be significantly weaker in large pools of
weakly correlated neurons (such as the ones contributing to each site in
our VSD experiments). Response variance was nearly constant
across space within our 8 � 8 mm region of interest (ROI, red square
in Fig. 2c).

As with response amplitude, positive values of d 0 were widespread
and the values increased significantly with target contrast (Fig. 2c, right
column). Note that even for contrast as low as 3%, reliable responses
(d 0 4 1) could still be measured.

Spatial correlations in V1 population responses

To characterize the spatial correlations in V1 population responses, we
computed the average Pearson correlation (across trials) between the
VSD responses at pairs of sites, as a function of their separation
(Fig. 2f). The average correlations between neighboring sites in the
imaged area were high, and fell off gradually with distance. The
correlation structure was not significantly different between target-
present trials (thin black curve) and target-absent trials (thin gray
curve) (also, see Supplementary Fig. 3), suggesting that correlated
variability in population responses is independent of the stimulus.
These spatial correlations are well described by Gaussian noise (Sup-
plementary Fig. 3) that is the sum of three components (Fig. 2f, thick
black curve): a spatially independent noise (white noise), a correlated
noise, where the correlations fall off exponentially over space, and a
spatially uniform noise that varies only across trials (random DC).

The observed correlation values seem, at first, surprisingly high and
widespread given the low correlations in spiking activity typically
observed between pairs of cortical neurons27,33–35. However, it is
important to note that such high correlations at the level of neural
populations are expected even if the underlying correlations between
individual neurons are very weak. In large pools of neurons, the
independent neural noise within the pool averages out, leaving the
weak correlated noise unaffected; this leads to much higher correlations
between the pooled responses. For example, assuming approximately
200,000 neurons per mm2 of V1 cortex and a uniform pairwise
correlation of 0.001 between neurons, the expected correlation
between two neighboring 0.25 � 0.25 mm pixels is 0.926 (Supplemen-
tary Fig. 4 online; see also Supplementary Methods online). This
simple computational analysis demonstrates that pairwise correlations
that are undetectable at the level of single neurons can create
dramatic correlations at the level of neural pools. Therefore,
single-unit electrophysiology may be an inadequate tool for studying
the correlations that are relevant at the level of neural populations.
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Table 1 Candidate pooling rules

1. Maximal Average Amplitude: wi a 0 only for the site with maximal average

amplitude

2. Maximal d 0: wi a 0 only for the site with maximal d ¢
3. Maximal Amplitude: wi a 0 only for the site with maximal amplitude in a given

trial

4. Mean Amplitude: wi ¼ 1/n

5. Weighted Average Amplitude: wi p E(xi)

6. Weighted d ¢: wi p d ¢i
7. Optimal: see equation (2) and Supplementary Methods
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Figure 3 Optimal two-site and multiple-site pooling. (a) Each colored curve represents pooled sensitivity over two sites with different relative sensitivities as
a function of the correlation between the sites (computed using equation (5), Supplementary Methods). Dashed vertical lines indicate the point of transition

from positive pooling (on the left) to negative pooling (on the right). (b) Normalized falloff in sensitivity along the minor axis of the average response in

Figure 2e (gray) and falloff in correlations along the same axis (black). (c) One-dimensional cut through the optimal whitening filter that, when convolved with

the imaging responses, generates responses that are statistically independent across space. (d) Optimal set of weights obtained by convolving the whitening

filter twice (see Methods) with the average response amplitude (Figure 2e). Note that the optimal filter contains a positive region at the center and a large

negative region in the surround.
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Our results are also consistent with the long-range corre-
lations observed between electrophysiological responses and VSD
responses in the visual cortex of anesthetized cats36. Control mea-
surements using an ‘‘artificial cortex’’37 verified that the imaging
system does not contribute significantly to the spatial correlations
reported here (Supplementary Fig. 5 online). The effect of
pooling may also explain the weak relationship between mean and
variance in the VSD responses: in large pools, the variance is
dominated by the weak correlated noise, which may be relatively
stimulus-independent.

Widespread correlations were observed in all of our experiments
(mean t ¼ 2.07 ± 0.1 mm, n ¼ 8; where t is the space constant of the
exponential noise component). As will be described below, such
correlations impose significant constraints on the way information
from pools of neurons should be combined.

To summarize, we found that V1 population responses, as measured
by VSD imaging, can be described as the sum of (i) a spatially extended
stimulus-evoked response that varies in amplitude (but not shape) with
stimulus contrast and (ii) a stimulus-independent Gaussian noise with
widespread spatial correlations.

Candidate spatial pooling rules

The results presented in the previous section demonstrate that target-
related neural responses are widespread in V1. Neural responses at
some, or all, of these V1 sites could contribute to the monkey’s
behavior. How might these responses be combined over space to detect
the target? How do different candidate pooling rules compare in terms
of the detection sensitivity they support? How should V1 signals be
pooled to maximize detection accuracy?

To address these questions, we explored different candidate de-
coding rules that combine information from multiple sites in V1
(the important issue of how to dynamically pool information
over time will be addressed elsewhere). The rules that we consider
here (see Table 1) are based on linear summation, in which the
VSD responses from each site in V1 are summed to form a
pooled response,

xpooled ¼
Xn
i¼ 1

wixi ð1Þ

where wi is the weight given to response xi from site i. This
pooled response is the ‘decision variable’ used to determine if the
target is present or absent on a given trial (discussed below). The
rules differ in the weights that they assign to each site. Pooling rules
can be divided into two classes. In the first, detection is based on
signals provided only by a single V1 site. In rule 1 the selected site is the

one with the Maximal Average Amplitude; in rule 2 the selected
site is the one with the Maximal d 0; in rule 3 the selected site is the
one with the Maximal Amplitude (in this case, the site may vary from
trial to trial).

In the second class of rules, detection is based on the weighted
average of VSD responses from all sites within a given pooling area (i.e.,
an area containing the whole active population). In rule 4 equal weights
are given to all sites (Mean Amplitude). In rule 5 the weights are
proportional to the average amplitude (Weighted Average Amplitude).
In rule 6 the weights are proportional to d 0 (Weighted d 0).
Finally, under certain assumptions it is possible to derive an Optimal
pooling rule (rule 7) for combining information from multiple
sites26,38. The derivation of this Optimal pooling rule is described in
the next section.

Optimal spatial pooling

The first six pooling rules in Table 1 do not take into account possible
spatial correlations in population responses. Our results, however,
indicate that at the level of large populations of neurons, spatial
correlations are strong and widespread (Fig. 2f). What is the optimal
way to pool correlated neural responses?

The optimal rule for combining information from multiple sites can
be derived if the response amplitude in each site is a Gaussian-
distributed random variable that is independent across trials (but not
necessarily independent across space and time within a trial), and if the
covariance of the responses is independent of the stimulus. Under these
assumptions, which apply to the measured responses (Supplementary
Fig. 3), a linear summation rule (equation (1)) is optimal, and no non-
linear rule can significantly exceed its sensitivity38.

The optimal set of weights, w ¼ {w1, y, wn}, is given by

w ¼ S�1s ð2Þ
where R–1 is the inverse of the response covariance matrix R, and s is
the mean difference in response between the signal and noise trials (see
Supplementary Methods). The expected sensitivity of the decoder that
uses the optimal weights is given by the Mahalanobis distance between
the mean of the noise and signal distributions38:

d 0
pooled ¼ ½sTS�1s�1=2 ð3Þ

where sT is the transpose of s.
To demonstrate the principles of optimal pooling in correlated noise

and provide intuitions about how correlated noisy responses should be
combined, we first consider the simple case of combining responses
from two sites. We then proceed to the general case of pooling across n
sites, where n can be arbitrarily large.
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Figure 4 Methods for measuring neural and behavioral detection sensitivity.

(a) Distributions of the VSD responses in the example experiment, pooled

over an area of B8 � 8 mm of cortex using the optimal set of weights

(Fig. 3d). Pooled responses in target-present trials (gray) and target-absent

trials (black) are separated according to target contrast. The bottom panel

shows combined distributions across all target-present and all target-absent

trials. The vertical line represents an optimally placed criterion for separating

target-present trials from target-absent trials (see text). (b) Proportion of trials
in which the observer reported that the target was present as a function of

target contrast. Zero contrast represents target-absent trials (the probability at

this point is the false alarm rate). Black triangles, monkey’s performance.

Gray circles, performance of an observer that uses the Optimal rule to pool V1

responses. Solid curves are the best fitting Weibull functions39. The dashed

vertical lines and the corresponding numbers are the thresholds (see Methods). The model’s detection threshold was significantly lower than the monkey’s

detection threshold (bootstrap test, P o 0.001). Horizontal error bars indicate 95% confidence interval. The model’s threshold was still significantly lower

than the monkey’s threshold even with suboptimal criterion that reduced the false alarm rate of the model to a level comparable to that of the monkey.
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Optimal pooling from two sites

Consider responses from a pair of sites with sensitivity {d 0
1, d 0

2} and
correlation r. Using equations (2) and (3) we derived the optimal
weights and the combined sensitivity at the two sites (see equations (4)
and (5) in Supplementary Methods). We then computed the values of
d 0

pooled as a function of r, for different values of d 0
2, with d 0

1 set
arbitrarily to 1.0 (Fig. 3a). As can be seen, there are two basic regimes
and corresponding strategies for efficient pooling of information,
depending upon the values of d 0

2 and r. When d 0
2 is equal to d 0

1

(blue curve), the best pooled performance occurs when the two sites are
uncorrelated (d 0

pooled ¼ O2). On the other hand, when d 0
2 is much

lower than d 0
1 (e.g., d¢2 ¼ 0, yellow curve), the best pooled performance

occurs when the responses at the two sites are highly correlated (e.g.,
d 0

pooled 4 2 for r¼ 0.9). In this case, d 0
pooled can be much higher than

when the two d 0 values are high and uncorrelated. This demonstrates
that under some conditions, correlations can significantly improve
neural sensitivity26,28,35. The reason for this improvement is simple. If
the variability in an uninformative site is highly correlated with the
variability in an informative site, then pooled sensitivity can be
improved by estimating the common noise and removing it from the
informative site. This is accomplished by giving a negative weight to the
uninformative d 0

2 site.
The key property that determines which form of pooling is more

efficient is the relative rates of falloff in d 0 and r over space. Specifically,
if the ratio of the d 0 values at two sites falls below the correlation
between the two sites, then the activity from the sites should be
combined using a negative weight. To examine the interactions between
d 0 and r, we fitted descriptive functions for d 0 and r from the VSD
imaging data in the example experiment (Fig. 3b). Because d 0 falls off
more rapidly than r (note that r ¼ 1 at a distance of 0), the highest
sensitivity (improvement of 7% relative to d 0

max) is obtained by
combining the site with maximal d 0 with a second site approximately
3.2 mm away, using a negative w2 (see Supplementary Fig. 6 online).

Optimal pooling from multiple sites

The basic results for optimal pooling over two sites apply in the more
general case where responses are pooled from multiple sites. We

obtained the optimal weights for the example experiment (Fig. 3d) by
using a decorrelating filter (whitening filter) (Fig. 3c; see Supplemen-
tary Methods). This set of weights contains positive and negative
values, just as when optimally pooling VSD signals from two sites. The
exact shape of the optimal weighting function depends on the spatial
pattern of the neural responses and on the correlated variability. In all
eight experiments examined here, the optimal weights contained a
central positive region and a larger negative surround. To the best of
our knowledge, such antagonistic center-surround pooling models
have not been previously considered for decoding neural population
responses in the cortex.

Using equation (3) we can compute the expected d¢pooled when
responses are pooled from all sites in an 8 � 8 mm ROI (e.g., Fig. 2c)
using the optimal weights (e.g., Fig. 3d). While the maximal improve-
ment when pooling only two sites was B7% relative to d¢max, the
improvement when using the optimal weights and pooling over all sites
in a ROI of 8 � 8 mm was much larger (an average increase of 61 ±
17%, n ¼ 8).

Neural and behavioral detection sensitivity

To evaluate the relative efficiency of different candidate pooling rules,
we next developed a method for measuring detection sensitivity from
the VSD signals that also allows direct comparison with the behavioral
sensitivity of the monkey.

Consider first the sensitivity of the monkey. The proportion of trials
in which the monkey reported that the target was present increased
monotonically as a function of target contrast (Fig. 4b, black triangles).
At 25% contrast, the monkey detected the target on every trial. As the
contrast was lowered, the probability of detection dropped monotoni-
cally. The monkey’s performance was first fitted with a standard
psychometric function39 (see Methods), and then the overall accuracy
(overall percent correct) and the contrast threshold (contrast at which
accuracy is 75%) were computed.

Detection sensitivity of the optimal pooling rule

Next, consider the sensitivity of V1 population responses in the example
experiment. For each trial, the neural responses were pooled across
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Figure 5 Comparing detection sensitivity of

candidate pooling rules. (a) Difference in overall

percent correct between the first six pooling rules

from Table 1 and the Optimal rule, in the example

experiment. Asterisks indicate rules with

performance significantly different from the

Optimal (bootstrap test, P o 0.05; error bars ¼
95% confidence interval). (b) Average difference
across all eight experiments in overall percent

correct between the six pooling rules and the

Optimal rule. Same conventions as in a. Asterisks

indicate rules with performance significantly

different from the Optimal rule across experiments

(paired t-test, n ¼ 8). (c) Scatter plot of threshold

for the Optimal pooling rule vs. the monkeys.

Filled symbols indicate experiments in which the

Optimal model’s detection threshold was

significantly lower than the monkey’s threshold

(bootstrap test, P o 0.05). Error bars indicate one

s.e.m. centered on the mean. (d) Average

difference in overall percent correct between the

Optimal rule using an 8 � 8 mm pooling area and

the seven pooling rules at three pooling areas

(2 � 2 mm, light gray; 4 � 4 mm, dark gray; 8 �
8 mm, black). Error bars in b and d show one s.e.m.
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space using the optimal set of weights (Fig. 3d). Pooled responses in
target-present trials (Fig. 4a, gray bars) and target-absent trials (Fig. 4a,
black bars) are plotted separately for each target contrast. There was no
overlap between the two distributions at high target contrasts. The
overlap increased significantly as target contrast was reduced.

To determine the approximate detection sensitivity implied by these
distributions, we computed how well an observer could detect the
target from these pooled responses. The observer uses a criterion to
decide whether the target is present or absent on a given trial. This
criterion (Fig 4a, vertical line) is the one that
minimizes the error rate for the combined
distributions (Fig. 4a bottom panel). Once
this criterion is found, we can compute for
each target contrast the probability that the
observer would report that the target was
present; this is simply the proportion of trials
in which the pooled response at that target
contrast exceeds the criterion. To ensure that
we did not overestimate the detection sensi-
tivity, the analysis was performed separately
for each trial using a jackknife procedure40

(see Supplementary Methods).
Next, we compared the performance of the

Optimal rule (Fig. 4b, gray circles) with the
performance of the monkey (Fig. 4b, black
triangles). The solid curves show the monkey’s
psychometric function (black) and the neuro-
metric function obtained with the Optimal
rule (gray). The threshold of the neurometric
function is significantly lower than the thresh-
old of the psychometric function. In other
words, under conditions in which the monkey
fails to detect the target, neural population
responses in V1 continue to provide reliable
information regarding the target. This result
was consistent across all eight experiments
(Fig. 5c). This finding is important for two
reasons. First, it demonstrates that VSD
imaging in behaving monkeys is highly
sensitive. Second, it shows that V1 population
responses are not used optimally by the brain
in this task.

Our next step was to compare the detection sensitivity of the
different pooling rules in Table 1.

Detection sensitivity of all pooling rules

Detection sensitivity for all the pooling rules was obtained using the
same procedure described above. We computed the difference in
overall percent correct between the first six pooling rules in Table 1
and the Optimal rule, for the example experiment (Fig. 5). As expected,
all pooling rules performed significantly worse than the Optimal
rule. Importantly, rules based on averaging, such as Mean
Amplitude or Weighted Average Amplitude, performed significantly
worse than the Maximal d 0 rule, which uses a single, highly infor-
mative, 0.25 � 0.25 mm site. The Maximal Amplitude rule also
performed poorly. The same pattern of results holds across all eight
experiments (Fig. 5b). Finally, we note that the threshold of
the Optimal rule was consistently lower than the threshold of the
monkey (Fig. 5c).

To examine the effect of the pooling area on the performance of the
models, we computed the average accuracy of the seven models across
all experiments, for three pooling areas (Fig. 5d). Because the pooling
area was always centered on the peak of the average response, the
performance of the Maximal d 0 and the Maximal Average Amplitude
rules remained constant as pooling area changed. As the pooling area
was increased, the performance of most pooling rules decreased. Thus,
including more neurons in the pool caused a significant decrement in
the overall accuracy of most pooling models. The Optimal rule was the
exception; it was the only rule where performance improved as the
pooling area increased.
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during a short temporal interval (light red bar). The averaging interval started at a fixed time after
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averaging (Max end avg.). In the example in the diagram, the averaging period ends before the maximal

averaging time because the maximal averaging interval and the motor preparation interval overlap (dark

red region). (b–e) The average difference in percent correct between the Optimal rule using the default
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The non-optimal rules perform poorly when pooling over a large
area due to the spatial correlations (Fig. 2f). Because the pool contains
both highly sensitive and weakly sensitive neurons, averaging these
together reduces the signal without reducing the correlated noise.

Importantly, rules that rely on a single-site, such as Maximal d ¢,
performed poorly when considering sites that are significantly smaller
than 0.25 � 0.25 mm (Fig. 6). With smaller sites, independent noise
dominates the response, leading to decreased performance.

Finally, we determined how the parameters of the temporal intervals
used in our analysis affect the accuracy of the seven pooling rules
(Fig. 7). The results of this analysis demonstrate that the relative
performance of the different pooling rules is insensitive to the exact
values of these temporal parameters.

DISCUSSION

In summary, our primary goal here was to characterize the statistical
properties of population responses in V1, as measured by VSD
imaging, and to determine the neuro-computational implications of
those statistical properties for efficient decoding of population
responses. We found that V1 population responses can be exquisitely
sensitive to the presence of the visual target, and provide reliable
information even at contrasts that are below psychophysical detection
threshold. Target-related signals are distributed over several mm2 in V1,
even for small targets, and thus responses from a large population of
neurons are available to subsequent decision and preoculomotor
circuits. We observed strong and widespread spatial correlations in
V1 responses, which set limits on the improvement that can be
attained by pooling across the neural population. We found that the
effect of these spatial correlations on subsequent processing stages
could be minimized by using a simple pattern of excitatory and
inhibitory connections.

The optimal antagonistic center-surround decoding rule that we
report here for VSD signals in V1 is similar to decorrelation mechan-
isms that have been discussed extensively in the literature in the context
of encoding41. These mechanisms, however, are conceptually quite
different. While the decorrelation operation in the context of encoding
is done for the purpose of redundancy reduction, the decorrelation at
the decoding stage has to do with noise rejection. To the best of our
knowledge, decorrelation for noise rejection has not been considered as
an important decoding strategy at the level of neural populations.

It is important to note that, in general, it is difficult to draw strong
conclusions about which decoding strategy is actually used by the
subject from comparisons of neural and behavioral sensitivities.
A decoding model could outperform the subject and still be used by
the brain if inefficiencies downstream of the recorded area lead to a
drop in behavioral performance. Similarly, a decoding model that
performs worse than the subject could, in principle, still be used in the
brain since recorded signals inevitably contain only a subset of the
available neural information and may be contaminated by non-neural
sources of noise. Therefore, our analysis is not aimed at determining
which pooling rule is most consistent with the monkeys’ behavior.

Our finding that optimal pooling of VSD signals consistently out-
performs the monkey demonstrates that VSD imaging is a sensitive
measure of neural population responses and that inefficiencies at, or
downstream to, V1 limit behavioral performance in our detection task.
This finding would be less compelling if the monkeys were not
performing as well as possible, perhaps because easy high-contrast
trials were mixed with difficult low-contrast trials. This possibility is
unlikely for three reasons. First, monkeys are heavily trained on this
task and their performance is stable. Second, the monkeys’ perfor-
mance at low contrast was not significantly improved when tested in

control experiments in which only low-contrast targets were present.
Finally, human performance on the same task, under identical condi-
tions, did not differ significantly from monkey performance.

Recent results from our laboratory (C.R. Palmer, S.Y. Cheng and
E.S., Soc. Neurosci. Abstr. 31, 509.11, 2005) suggest that some single
units in V1 can be as sensitive as the monkey in the detection task.
However, it is not clear whether subsequent processing stages can
isolate the signals from those specific neurons and use them for
performing the task. A more global pooling rule with excitatory and
inhibitory connections could be more robust, efficient and easier to
implement with neural circuits.

Communication between brain areas is primarily mediated by spike
activity, whereas VSD responses emphasize subthreshold activity.
It follows that some of the information in the VSD responses may
not be transmitted from V1 to subsequent processing stages. None-
theless, we note that the subthreshold responses are produced by spike
activity in presynaptic neurons that are predominantly located within
V1 (ref. 42), and thus, the VSD signals are still likely to be tightly linked
to spike activity in V1.

The widespread correlations and the relatively stimulus-independent
response covariance observed here seem surprising at first, but in fact,
are an expected consequence of pooling weakly correlated single
neuron responses (whether subthreshold or suprathreshold). Further-
more, at each stage of processing, weak correlations may be an
inevitable consequence of the cortical architecture with its massive
convergence and widespread lateral and feedback connections. Given
these considerations, it seems likely that decorrelation mechanisms
(such as the one we propose) are widespread throughout the central
nervous system.

The finding that antagonistic center-surround pooling is optimal in
the face of significant spatial correlations may provide an additional
and unexpected explanation for the pervasive center-surround recep-
tive field organization, and the lateral inhibitory interaction between
nearby populations of neurons in the cortex. More generally, our
analysis shows that under conditions where the correlation between
populations of neurons is high, computing the difference in the
response between two highly correlated populations of neurons with
different tuning properties should dramatically improve sensitivity.
This could help explain why populations of neurons with opposite
tuning properties are commonly found at adjacent locations in the
cortex. For example, in macaque MT, neurons with opposite direction
preferences are frequently located in adjacent columns43. This archi-
tecture could allow subsequent mechanisms to remove correlated noise
by pooling over a few nearby columns.

Although there are many ways in which the brain could deal with
wide-spread spatial correlations, one general and efficient method
would be to decode the population responses in two steps. First,
apply a local whitening filter to the neural responses, and then
apply a rule such as Weighted d 0 (which is optimal for signals with
uncorrelated variability) to the whitened signals. In this scheme,
the whitening operation in the first step could be beneficial for
multiple tasks.

In conclusion, we report that (i) most previously proposed models
for decoding population responses are highly inefficient because of the
strong and long-range spatial correlations, and (ii) a simple, biologi-
cally plausible decorrelation operation that uses excitatory and inhibi-
tory mechanisms leads to optimal decoding in pattern detection tasks.
These correlations have a potential detrimental impact on neural
information processing in any perceptual or motor task. Thus,
antagonistic pooling over populations of neurons with different
tuning properties could be a general and robust strategy that is
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employed by the brain for efficient decoding of correlated neural
population responses.

METHODS
Behavioral task and visual stimulus. Monkeys were trained to detect a small

oriented Gabor target (sine wave grating multiplied by a Gaussian window) in a

uniform gray background (Fig. 1a). Gabor targets have the advantage of being

localized both in space and in the Fourier domain. Such targets are well

optimized for activation of V1 neurons. Gabor target parameters were:

s ¼ 0.25–0.331, spatial frequency ¼ 1.4–1.7 c.p.d., eccentricity ¼ 2.7–4.01;

orientation was typically horizontal. During each recording session, the

monkey performed several hundred detection trials. Each trial began when

the monkey fixated a small spot of light (0.11 � 0.11) on a video display.

Following an initial fixation, the fixation point dimmed. In 50% of the trials,

no target was presented and the monkey was required to maintain gaze within a

small window (o21 full width) around the dimmed fixation point for a total of

1,500 ms, in order to receive a liquid reward. In the remaining trials, a target

appeared 300 ms after the fixation point dimmed and remained on for 300 ms.

The monkey was required to shift gaze to the location of the target within

600 ms from target onset and maintain gaze at that location for an additional

300 ms in order to receive the reward. Monkey reaction times (time of saccade

initiation) were short for the highest contrast (median reaction time across all

experiments E150 ms) and significantly longer for the lower contrasts (median

reaction time 4 300 ms), suggesting that a longer integration time is required

for detection of low contrast targets. Within a block of trials, the target contrast

was varied pseudorandomly between four to six levels, spanning the monkey’s

detection threshold.

Behavioral results were fitted by a Weibull function39:

PðCÞ ¼ 1 � ð1 � FAÞ � e�ðC=aÞb

where FA is the false alarm rate, C is the target contrast, and a and b are the

offset and slope terms, respectively. The threshold was computed as the contrast

at which accuracy is 75% (note that the threshold takes into account the false

alarm rate).

Visual stimuli were presented on a high-end 21’’ color display. The display

subtended 20.51 � 15.41 at a viewing distance of 108 cm, had a pixel resolution

of 1024 � 768, 30-bit color depth and a refresh rate of 100 Hz. Visual stimuli

were generated using a high-end graphics card on a dedicated PC, using

custom-designed software. All stimuli were presented at a fixed mean luminance

of 30 cd/m2 on a gamma-corrected monitor. Behavioral measurements and data

acquisition were controlled by a PC running a software package for neurophy-

siological recordings from alert animals (Reflective Computing). Eye movements

were measured using an infrared eye-tracking device (Dr. Bouis Inc.).

Optical imaging with VSD. The experimental techniques for optical imaging

with VSD in behaving monkeys have been described elsewhere21,22,44. All

procedures have been approved by the University of Texas Institutional Animal

Care and Use Committee and conform to NIH standards. Briefly, we used

oxonol voltage-sensitive dyes45 to stain the cortical surface and an Imager

3001 system (Optical Imaging) to image brain activity. VSD responses measure

the sum of changes in membrane voltage across all the elements within the

superficial layers of the cortex20.

Imaging data were collected using resolution of 512 � 512 at 110 Hz. For

most further analysis, the VSD responses were further binned to a resolution of

64 � 64 pixels (sites), where each site corresponds to 0.25 � 0.25 mm. Bin size

had a significant effect on the pooling models that rely on a single site (Fig. 6),

but no significant effect on other pooling models (data not shown).

Our recording chambers were located on the dorsal portion of V1, with the

anterior portion of the chamber reaching close to the lunate sulcus and the

border between V1 and V2. We used intrinsic imaging and electrophysiology to

determine the retinotopical organization in each recorded region and the

layout of orientation columns. The cortex in our cranial windows represents

stimuli that are B2.5–51 away from the fovea in the lower quadrant of the

contralateral hemifield.

Analysis of imaging data. We completed 15 VSD experiments in two hemi-

spheres of two macaque monkeys. From these experiments, we selected for

further analysis eight experiments in which the maximal d 0 at 25% contrast

stimulus exceeded 3.0. Experiments with lower sensitivity were usually attri-

butable to poor staining or excessive noise.

Our analysis was divided into three steps: (i) we removed trials with

aberrant VSD responses (generally less than 5% of the trials); (ii) we normal-

ized the responses in each site by the average fluorescence in a 100 ms interval

prior to stimulus onset; and (iii) we extracted from the VSD responses at each

site the average response amplitude over a given temporal interval. The

normalization in (ii) serves to minimize the effects of uneven illumination

and staining, and to eliminate the effect of slow drift across trials in the VSD

response. VSD responses were averaged during an interval that started 36 ms

after stimulus onset and ended either 200 ms after stimulus onset or 20 ms

before saccade onset in trials where reaction time was shorter than 220 ms

(Fig. 7a). Our results are relatively insensitive to the exact values of these

temporal parameters (Fig. 7b–e).

To remove trials with aberrant VSD responses, we evaluated the average

response amplitudes at the site with the maximal d¢. For each condition, the

average across all repetitions was subtracted from the response in each trial and

the standard deviation of the distribution of residuals was computed. Trials

with residual response greater than two standard deviation values were

excluded from further analysis. This simple procedure eliminates trials where

the animal made excessive movements.

Note: Supplementary information is available on the Nature Neuroscience website.
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