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Abstract

Random coefficient discrete choice models are a popular method for estimating demand in dif-

ferentiated product markets. We introduce a computationally simple estimator that uses linear

regression to estimate the distribution of random coefficients. The estimator is nonparametric

for the distribution of the random coefficients. We compare our estimator to several alterna-

tives in a Monte Carlo exercise, and find the estimator predicts out-of-sample market shares

well. We discuss extensions to panel data and dynamic programming.
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In a discrete choice demand model, consumer i chooses product j out of the set J if ui, j >

ui,k∀k = 1, . . . ,J, k 6= j. A standard setup has a vector of D characteristics xi, j for product j, and

utility is parametrized as ui, j = x′i, jβ+εi, j, where β is a vector of parameters to estimate that reflect

the marginal utility of the product characteristics and εi, j is a product-specific error term. Typically

εi, j is assumed to have a logit or normal marginal distribution.

In industrial organization, marketing, and transportation economics, hundreds of papers use

random coefficient models to estimate both individual and aggregate demand. For some examples,

see Hayden J. Boyd and Robert E. Mellman (1980), N. Scott Cardell and Frederick C. Dunbar

(1980), Dean A. Follmann and Diane Lambert (1989), Pradeep K. Chintagunta et al. (1991),

Steven Berry et al. (1995), Aviv Nevo (2001), Amil Petrin (2002) and Kenneth Train (2003).

Random coefficients generalize the model so that ui, j = x′i, jβi + εi, j, where the D-vector βi is

specific to consumer i. Adding random coefficients allows consumers to substitute (as prices in

xi, j change) between products with similar non-price observables in xi, j. Daniel McFadden and

Kenneth Train (2000) show the more general mixed logit can flexibly approximate choice patterns.

Random coefficient estimators are difficult to compute. The likelihood for data on the choices

ji of consumers i = 1, . . . ,N is

L(γ) =
N

∏
i=1

Z
β

exp
(

x′i, ji
β

)
∑

J
k=1 exp

(
x′i,kβ

) f (β | γ)dβ.

The parametric density f (β | γ) reflects the distribution of the unobserved heterogeneity: the tastes

βi. The object is to estimate the parameters γ in this density.

Estimation usually proceeds by simulation: maximum likelihood or the method of moments.

The consumer i-specific numerical integral is of dimension D. The likelihood must be repeatedly

evaluated at trial guesses of γ. The nonlinear search over γ can suffer from multiple local maxes,

resulting in the need to try many starting values. The dimension of γ can be large: γ often contains

variance matrices of multivariate normal distributions.

Hierarchical Bayesian estimation is an alternative (Peter E. Rossi et al. 2005). Computationally
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efficient Gibbs sampling requires training in conjugate family relationships that are needed for ef-

ficient random number generation. These conjugate families require restrictive model assumptions

that can break down with small model perturbations. Gibbs sampling itself requires training and

monitoring by the user.

This paper describes a method for estimating random coefficient discrete choice models that is

both flexible and simple to compute. We demonstrate that with a finite number of types, choice

probabilities are a linear function of the model parameters. Because of this linearity, we demon-

strate that our model can be estimated using linear regression instead of nonlinear optimization.

We can approximate an arbitrary distribution of random coefficients by allowing the number of

types to be sufficiently large. Therefore, we say our estimator is nonparametric for the distribution

of heterogeneity.

I. Review of Series Estimators

Let y j,t be the market share of product j in market t, xt the characteristics of all J products in

market t, and η j,t measurement error in market shares. Let y j,t = g j (xt)+η j,t . A series estimator

approximates an unknown function g j (xt) with the approximation g j (x) ≈ ∑
R
r=1 hr (x)θr. Here,

{hr (x)}R
r=1 is a known basis of R functions chosen to ease mathematical approximation and θr is

an approximation weight on the function r.

The key behind series estimation is that the unknown parameters θr enter the market share ap-

proximation linearly. Estimation just regresses y j,t on {hr (xt)}R
r=1 for various markets xt . Donald

W. K. Andrews (1991) shows that estimators of g j (x) for a given x and some functions of g j (x)

are asymptotically normal.

II. Estimating Random Coefficient Logit Models

We now show how linear regression can estimate the random coefficients logit model for market

share data. Assume for now that there really are R known, discrete consumer types. Each type r
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is distinguished by a known random coefficient vector βr. Let θr be the fraction of consumers of

type r in the population.

Let P( j | t) be the no-measurement error market share of product j in market t. Market shares

are the sum of the individual choice probabilities of each type in the marketplace,

P( j | t) =
R

∑
r=1

(
exp
(
βrx j,t

)
∑

J
k=1 exp

(
βrxk,t

))θ
r.

Type r’s logit choice probabilities are weighted by its frequency θr. The basis functions are not the

flexible mathematical functions from traditional series estimators, but the predictions of an individ-

ual choice model for consumer type r. No unknown parameters enter the logit choice probabilities:

each βr represents all the utility parameters for type r. The unknown frequencies θr are structural

objects, not just the approximation weights from series estimation.

The key idea is that the type frequencies θr enter the market shares linearly and can be estimated

from a linear regression of shares on logit choice probabilities for all types. Linear regression is a

closed form matrix algebra formula that usually takes milliseconds to execute.

With actual data y j,t on market shares, we estimate the regression equation

y j,t =
R

∑
r=1

(
exp
(
βrx j,t

)
∑

J
k=1 exp

(
βrxk,t

))θ
r +
(
y j,t −P( j | t)

)
to estimate the R θr’s. Let T be the number of markets. There is one regression observation for each

product and each product, or T · J regression observations. The number of unknown parameters is

the number of types: R. The term
(
y j,t −P( j | t)

)
reflects the measurement error in market shares.

Linear regression provides a closed form estimator for θr, which eliminates the need for numerical

optimization.

Once the θr’s are estimated, we can predict out-of-sample market shares by varying the product

covariates x j,t in the logit choice probabilities that enter the equation for P( j | t).

Typically the R random coefficient vectors βr are unknown. We view our estimator for the

θr’s as a nonparametric approximation to an underlying, possibly continuous density of random
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coefficients. So before running the regression, we first draw or deterministically choose R random

coefficients βr. The estimator is not particularly sensitive to the scheme used to pick the βr’s, as

the θr’s are completely flexible parameters to be estimated. We do require the regularity condition

that we span the domain of the underlying true random coefficient distribution, in the limit as R

grows.

There is no way to impose that the types have some restrictive parametric distribution. Given

that we know of no empirical applications where researchers would actually know the types have

some distribution, we see no reason why a researcher would not want to be nonparametric on the

weights over the R types.

R does not have to be too large. For two dimensions of β (D = 2), R = 200 works well. Keep

in mind that the matrix inversion becomes demanding only around R = 10,000, above the range of

empirical relevance. For a unique inverse, we need the number of observations to be greater than

the number of parameters: T · J ≥ R. Otherwise, a generalized inverse can be used.

One option imposes the constraints ∑
R
r=1 θr = 1 and θr ≥ 0 for r = 1, . . . ,R. If so, the closed

form regression becomes an inequality constrained least squares (ICLS) estimator, which requires

numerical optimization.

Our approach shares the intuition of spanning the space of economic models with the im-

portance sampling estimator of Daniel A. Ackerberg (2001). However, his importance sampling

estimator requires parametric type densities, a change of variables assumption, and numerical op-

timization.

III. Extensions

A type r could involve values for the choice-specific errors of the form εr
j in addition to random

coefficients βr. Shares are still the sum of decisions of R types of consumers:

y j,t ≈
R

∑
r=1

1{typer buys j | xt}θr,
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where the indicator 1{typer buys j | xt} says that consumer type r would buy product j when

faced with the choice characteristics xt . The symbol ≈ abstracts away from approximation and

measurement errors.

If the data are individual, choice ji for consumer i, then the regression becomes a linear proba-

bility model. Each consumer has J observations of the form, for observation j,

1{ j = ji} ≈
R

∑
r=1

1
{

typer buys j |
{

xik,
}J

k=1

}
θr,

where the dependent variable is 1 if consumer i bought j, and 0 otherwise. If the data are individual

panels of strings of choices of the form ji,1, ji,2, ji,3, . . . , ji,T , then the linear probability model

becomes

1
{

jT = ( ji,1, ji,2, ji,3, . . . , ji,T )
}
≈

R

∑
r=1

1

{
typer choosesstring jT |

{{
xt

i,k

}J

k=1

}T

t=1

}
θr.

With T periods of data, i has JT regression observations. The computational burden of linear

regression is the number of parameters R; regressions can have millions of observations.

The estimation of a forward-looking dynamic programming model is similar. Estimate the

regression equation

1
{

jT = ( ji,1, ji,2, ji,3, . . . , ji,T )
}
≈

R

∑
r=1

L

(
typer choosesstring jTi | β

r,

{{
xt

i,k

}J

k=1

}T

t=1

)
θr,

where the likelihood L for consumer i with preferences βr requires solving a dynamic programming

problem and integrating over unobserved actions and states, such as a consumer’s unobserved

inventory of a storable good. The dynamic programming problem must be solved R times before

the regression, but only R times. Under the assumptions in John Rust (1987), L has a closed form

once the choice-specific value functions are computed.
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Figure 1: True Random Coefficient Density in the Third Experiment
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IV. Monte Carlo

The following Monte Carlo explores the performance of three estimators on three different random

coefficient logit fake data designs. Each choice set has ten choices and an outside option with utility

0. D = 2 and each of the two x j components are generated by exponentiating uniform draws from

[0,3].

In the first design, the tastes for the two characteristics are independent. β1 ∼ N (0,1) and β2 ∼

N (1,2). In the second design, the tastes keep the same marginals and add a negative covariance of

-0.9. In the third design, the taste parameters are drawn from a mixture of multivariate normals:

0.7 ·N


 3

0

 ,

 0.1 −0.1

−0.1 0.5


+0.3 ·N


 0

3

 ,

 0.3 0.1

0.1 0.3


 .

This bimodal, 2-dimensional distribution of tastes is plotted in Figure 1.

Our estimator uses Matlab’s inequality constrained least squares minimizer. To obtain the

βr’s, we drew R different coefficients. Each coefficient is independent normal, with the mean the

estimate from the standard logit and the variance 3. We set R = n/5.
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Figure 2: Estimated Random Coefficient Density in the Third Experiment
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We estimate each of the three models on our fake data. Figure 2 is our estimate of Figure 1 for

a case of N = 1000 and R = 200. Only 17 points have positive mass, and those capture the mass

points in the underlying continuous density.

Table 1 presents the results for the root mean squared prediction error (RMSE) for an out-of-

sample market share prediction exercise where we sample new x characteristics for all the prod-

ucts. The out-of-sample exercise tests the structural use of demand models. A RMSE of 0.01

corresponds to true market shares of 10% for the 10 products and prediction errors of 1% in each.

In the first design, the RMSE is low and decreases with the sample size for the two consistent

estimators: regression and the random coefficients (RC) logit. The pure logit is inconsistent. In the

second design, only our estimator is consistent because the RC logit assumes independent random

coefficients. The prediction error is low and decreases with sample only for our estimator. In the

third design, the mixed multivariate normal in Figure 1 is a strong test of the nonparametric ability

of our estimator. Our estimator is consistent: the RMSE is low and decreases with the sample size.
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Table 1: Monte Carlo RMSEs for Out of Sample Market Share Predictions
Design n Logit Logit+RC OLS Logit

Indep. RC 500 0.080 0.012 0.015
1000 0.081 0.009 0.010
2000 0.081 0.009 0.008

Corr. RC 500 0.095 0.044 0.015
1000 0.103 0.044 0.011
2000 0.099 0.046 0.008

Mixed Corr. RC 500 0.121 0.073 0.016
1000 0.131 0.071 0.012
2000 0.127 0.070 0.008

Recall that we use at most R = 200.

Overall, our estimator has much better RMSE than the inconsistent estimators, and the loss in

out-of-sample RMSE is low in the first experiment, where the RC logit is efficient.

V. Conclusion

Random coefficients models have been thought to be computational demanding. We show that

this is not the case, by introducing a linear regression estimator that is nonparametric on the den-

sity of random coefficients. We discuss extensions to panel data and forward-looking dynamic

programming models.
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