
Discrimination Performance of Single Neurons:

Rate and Temporal-Pattern Information

S U M M A R Y  A N D  C O N C L U S I O N S

1. A new method of measuring the performance of neurons in

sensory discrimination tasks was developed and then applied to
single-neuron responses recorded in the auditory nerve of chin-

chilla and in the striate visual cortex of cat.
2. Most previous methods of measuring discrimination perfor-

mance havi employed decision rules that involve comparing the

total counts ofaction potentials (spikes) produced by two different
stimuli. Such measures ignore response pattern and hence may

not reflect all the information transmitted by a neuron' The pro-
posed method attempts to measure all (or most) of the transmitted
information by constructing descriptive models of the neuron's
response to eaih stimulus in the discrimination experiment; these

descriptive models consist of measured probability distributions

of the spike counts in small time bins. The measured probability

distribuiions are then used to define an optimal decision rule (an

icleal observer) for discriminating the two stimuli' Finally, discnm-

ination performance is measured by applying this decision rule to

novel presentations of the same two stimuli.
3. Intensity and temporal-phase discrimination were measured

for three neuions in theauditory nerve of chinchilla' The discrimi-
nation stimuli were low-frequency pure tones of 70-ms duration'

Intensity thresholds were found to be 5-20 dB lower at low inten-

sities using th e new pattern method compared with the traditional

counting method. The pattern method led to better performance

because it utilized both rate and temporal pattern information'
Phase discrimination performance using the countingmethod was

at chance because the average spike rate did not change with
phase. On the other hand, usingthe pattern method, phase discrim-

ination thresholds were found to decrease with intensity, often

reaching values equivalent to 30-40 ps oftemporal offset' These

thresholds are as good as or better than behavioral thresholds in

chinchilla.
4. Contrast and temporal-phase discrimination were measured

for three neurons in the striate visual cortex of cat. The discrimina-

tion stimuli were drifting sine-wave gratings of 100- to 160-ms

duration. Contrast discrimination functions measured by the pat-

tern method and the counting method were found to be essentially

identical. Phase discrimination using the counting method was at

chance. However, using the pattern method, phase thresholds
were found to decrease with contrast, reaching values equivalent

to 7 ms of temporal offset for the two simple cells'
5. Our resufts suggest that temporal response pattern carries

substantial information for intensity and phase discrimination in

theauditorynerveandforphasediscriminationinthestriatevi-
sual cortex. There are likely to be other tasks, such as temporal

i..qu.n.y discrimination and velocity discrimination, for which

co.,sideration of only rate information will substantially underes-

timate discrimination performance.
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I N T R O D U  C T I O N

A long-standing question in neurophysiology concerns
the natu-re of the neural code (Perkel and Bullock 1969);
specifically, how is information carried in the responses o[
inAiviOuai neurons, and how is this information utilized?
Assumptions made regarding the code and how it should be
measured can have a significant impact on estimates of the
amount of information carried and of the potential level of
neural performance (Moore et al. 1966). Consider assessing
the discrimination capabilities of a given sensory neuron
(e.g., Barlow and Levick l969a,b; Werner and Mountcastle
ieO:;. fo measure the minimum change in the stimulus
required to evoke a "reliably different response," the sen-

sory physiologist is required to define (grvena certain set of

expliiit-or impticit assumptions) an index of response (e'g',

the mean response rate) and an index of reliability (e'g', the
trial-to-trial variance associated with the mean rate)' If the
index ofresponse does not adequately reflect all ofthe rele-
vant information, and if the index of reliability does not

adequately reflect the probabilistic character of the re-

sponses, fhen the estimate of performance will be erro-

neous.
Most previous studies of discrimination performance in

single nzurons have not attempted to utilize all of the avail-
ab[ information. In the vision literature' studies of detec-
tion and discrimination performance have usually consid-
ered only the total number of action potentials (spikes) gen-

erated in some fixed time period during or after the

stimulus presentation (e.g., Barlow and Levick l969a,b;

Barlow etal. l97l;Cohn et al.191S;Fitzhugh 1958; Shap-
ley and Victor 1986; Tolhurst et al. 1983)' A similar ap-
pioach has been taken by a number qflgarins researchers

ie.g., Geisler et al. 1985; Relkin and -Pelli.1987; Sinex and

iiit.v 1986; Young and Barta 1986). Although some of

these studies have demonstrated good discrimination per-

formance, they may have underestimated sensitivity be-

cause they did not consider the temporal pattern of the
."aponr"t. Single neurons may transmit much information
in Lrms of a tJmporal code; thus it is important to consider
the temporal patiern of responses to stimuli when assessing

discrimination performance. Indeed, there are some dis-

crimination tasks, such as temporal-phase, temporal-fre-
quency, and velocity discrimination, for which considering

.i"iv toiuf spikes wiligreatly underestimate the sensitivity of

a neuron.
There have been several attempts to consider the tem-

poral structure of single-neuron responses' Siebert (1970)
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developed a model of auditory-nerve responses to pure
tones and used this model to derive an appropriate ideal
observer for frequency discrimination. The model takes
into account both the response rate and temporal pattern'
Siebert succeeded in showing that there is a great deal of
information for frequency discrimination available in the
temporal pattern of auditory-nerve responses. Following
Siebert, several recent investigations have also used statisti-
cal models ofauditory-nerve responses to examine the possi-
ble role of temporal pattern information in various audi-
tory discrimination tasks (Goldstein and Srulovicz 1977;
Miller et al. 1987). Optican and Richmond (1987) have
used Shannon's information theory (Shannon and Weaver
1949) and principle-component analysis to compare the
amount of rate and temporal-waveform information
carried by single neurons in inferior temporal cortex of
monkey.

The present paper describes a new method of measuring
the discrimination performance of spike-generating neu-
rons that utilizes both rate and temporal-pattern informa-
tion and makes minimal assumptions about the neural re-
sponse properties. The method is based on the concept of
the ideal observer from signal detection theory (e.g., Green
and Swets 1974\. (An ideal observer is a device that per-
forms optimally by using all the available information.) Spe-
cifically, we attempt to develop ideal observers that can
perform optimal discriminations of single-neuron re-
sponses to pairs of stimuli. If this can be achieved, the dis-
crimination performance of the ideal observer provides a
single number (proportion correct) that is a precise index of
the amount of information available for discrimination in
the neuron's response. (See annrNotx s for more discussion
of this measure of information.)

To minimize potentially misleading a priori assumptions
about the neuron's response properties, the present strategy
involves empirically measuring stochastic descriptions of
the individr.ral neuron's responses to each stimulus. These
descriptive models are then used to construct an ideal ob-
server (optimal decision rule) for each pair of discrimina-
tion stimuli. With this approach, it is possible to apply an
ideal-observer analysis to arbitrary discrimination stimuli
without making overly specific and restrictive assumptions.

There is much to be gained if one can measure all the
information transmitted by single neurons in discrimina-
tion tasks. To begin with, measurement of all the transmit-
ted information would provide a basis for evaluating the
relationship between single-unit activity and sensory perfor-
mance (e.g., Barlow and Levick 1969a; Tolhurst et al.
1983). Second, such measurements would be of obvious
value in testing hypotheses concerning the physiological
mechanisms responsible for the neuron's behavior. Third.
once the transmitted information has been measured, it can
be partitioned to determine how much is carried by changes
in rate and how much is carried by changes in temporal
pattern (Siebert 1970). Finally, the analysis might be com-
bined usefully with ideal-observer analyses developed for
peripheral stages of sensory processing [Barlow 1958; de
Vries 19431 Rose 1942, 1948; Tanner and Clark-Jones
1960; see Cohn and Lasley (1986) or Geisler (1989) for a
review of the vision literature; Peterson et al. 1954; Van
Meter and Middleton 1954: see Green and Swets (1914) for

a review of the early audition literature]. For example, it
may be possible to deduce what information is lost between
the periphery and the recorded neuron.

M E T H O D S  O F  A N A L Y S I S

The present ideal-observer analysis was developed for binary
discrimination and detection tasks, in which the stimuli are pre-
sented in discrete trials in a single-interval, forced-choice para-
digm with equal presentation probabilities and payoffs. Thus the
performance of the ideal observer is described completely by its
percentage of correct responses. P{C).t

The transmission of information from one level in a sensory
system to the next is often done solely by means of action poten-
tials propagating along the axons of single neurons. Thus electro-
physiological recording of the action potentials generated by a
single sensory neuron should, in principle, be sufficient for a com-
plete analysis of the information that it transmits. The response on
a particular trial is completely represented by the list of the times
(relative to stimulus onset) when each spike occurred during a
temporal anall'-sis interval, or trial, stretching from the stimulus
onset until no further information is available from the spike train
(or until a decision is forced). With little lols s1 generality, we
assign the spikes into time bins of finite width.' Thus the response
of a neuron on a trial is described by a list of integers giving the
number of spikes in each bin, Nr, Nr, . . . , N, ', N,, where Nr is
the number of spikes in the lth bin and n is the total number of
bins in the analysis interval.

In the discrimination experiment, one of two stimuli (a or B) is
presented at random. In the experiments presented and analyzed
here. the stimuli were continuous (or near continuous) sine waves
(i.e., pure tones or drifting sine wave gratings). These stimuli were
chosen to measure discrimination in the absence of onset and
offset transients; however. the present methods of analysis apply
equally well to transient stimulation.

Figure 1,4 illustrates hypothetical responses to continuous sinu-
soidal stimuli at two different intensity levels. Figure I'B shows
hypothetical responses to discrete stimuli that are of different in-
tensity (although we will not consider this case further in this
paper). Both figures are meant to illustrate the possibility that
increasing stimulus level may affect both the rate and the temporal
pattern of response.

To apply the discrimination analysis when the stimuli are con-
tinuous and periodic, it is necessary to divide the continuous re-
sponse into discrete trials. To do this, we let the duration of the
response (in units ofbins) be represented by m (see Fig. ll). Ifthe
nervous system is assumed to have some uncertainty about when
the stimulus was presented (which is a reasonable possibility to
consider), it becomes necessary to define an analysis interval that
is larger than the response duration. Thus let n represent the full
analysis interval, which consists of the response duration, m, plus

I Note that. once an ideal observer has been developed fbr this task' it
can be generalized to conditions with unequal presentation probabilities
and payoffs and to other tasks. such as the 2-interval forced-choice task
(e.g., see Green and Swets 1974).

2 Spike arrival times are real numbers; however. estimation of the pres-
ent descriptive models from a hnite number of stimulus presentations
requires that the arrival times be assigned to time bins of finite width. This
imposes little loss of generality because the time bins can be made small
enough to ensure that no more than one spike can occur in a bin and that
the positions ofspikes lalling within any given bin are well described by a
uniform probabil i ty density. Under these circumstances no information
would be gained by making the binwidths smaller. However, in the deriva-
tions that follow we allow the possibility of large bins, because it is often
necessary to use larger bins when there is a shortage ofdata on which to
bui ld the descript ive models.
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FIG. l. Schematic illustration of slimuli and responses used in thc
ideal-observer anal,vsis of 2-alternative discrimination tasks. The purpose
ofthis hgure is to dehne parameters used in analysis and to illustrate that
changing stimulus intensit)' may affec1 both response magnitude and re-
sponse pattern. .4: continuous periodic stimuli. Stimuli a and B are continu-
ous sine waves that dilier in amplitude. For the analysis. the continuous
response is divided into discrete responses of length nr. When temporal
uncertainty is assumed, then the entire response analysis intcrval (n) is thc
sum ofthe response duration. nr. and tltc uncertaint-v interval. t/. Because
responses are periodic, the responsc period (/) may be less than the re-
sponse duration (rl). B: discrete stimuli. Stimuli tr and p are energy pulses
of fixed duration presented in discrctc trials. Because responses are aperl-
odic. the response period (1) equals thc response duration (n). Summary of
parameters: n, analysis inlerval: ,?1. response duration: /, response periodl
and d, temporal uncertainty interval. All these parameters are expressed in
units of temporal bins.

an uncertainty interval.  d (also in units of bins). When the nervous
system is assumed to have no uncerlainty. then n - tn.

When the response to a periodic st imulus is also periodic (as

illustrated in Fig. l-!). it is possible 1o make use of the response
period (/) to reduce the amount of data that must be collected for

an accurate anal-vsis. Specifically, it is necessary to model only onc
response period (see below).

The task ofthe ideal observer is to decidc whether the response
occurring in a tr ial  was produced by st imulus a or by st imulus p. l t

is well known that the optimal performance in this situation is
obtained by applying the likalihood deci.sion rule'. the observer
computes the probability that the response resulted from stimulus
o. computes the probability that the response resulted lrom stimu-
lus d, and then picks the stimulus with the higher probabil ity.
Equivalently, the observer computes the likelihood ratio (L) of
these orobabilities

l -  -  P ( N r . . . . .  N ,  l l j y P ( N , .  . . . .  A , l " ) ( 1 )

and then picks alternative p i f  the rat io is >1.0 or a i f  the rat io is
< 1.0. The P(C) obtained when this decision rule is used is given by
the following formula

P ( C )  0 . 5  +  0 . 2 s  >  P ( N ' . . . . ,  N , l l j )  P ( N ' . . . . ,  A l  " ) l  ( 2 )

where  the  summat ion  is  over  a l l  poss ib le  va lues  o f  N ' ,  . . . ,  N , .
This equation is derived in appE.Notx a. As mentioned above, the
ideal observer's P(C) is a precise measure of the information avail-
able in the neuron's response to perlorm the discrimination task.
(See epplNptx e for more discussion of this point.)

To understand the basic logic ofthe present analysis. consider
measuring the responses of a neuron to pairs of st imuli  in a dis-
crimination experiment. If the neuron's responses were stable
enough. and i f  the neuron could be monitored for a long enough
period of time, then each of the two stimuli could be presented

man-v times: from the responses to these repeated presentations.
we would learn the probabil i ty of obtaining any and al l  possible

responses. no matter how complicated the neuron's behavior.
These measured probabilities would constitute a complete de-
scriptive model of the neuron's behavior (with minimal theoreti-
cal assumptions). They could then be used to assess optimal dis-
crimination performance by applying liq. 2 or. equivalently. b,v
applying Eq. I (the likelihood decision rule) to novel presentations

of the same two st imuli .
However. it is not feasible to measure a complete descriptive

model because there are lar too man,v-' probability values. Thus. for
the present empir ical approach to work. some d pt ' i r tr l  assump-
t ions must be made. At the same t ime, i t  is important to evaluatc
the degree to which these assumptions al low al l  the signi l icant
information in the neuron's output to be represented. I f  al l  the
information is not represented, discrimination perfbrmance will
be underestimated.

The proposed strategy fbr meeting both demands (limiting prob-

abi l i ty values while maximizing information represented) is to de-
velop descriptive models based on successively less restrictive rr

Trriori assumptions. As the assumptions become less restrictive.
the amount of information represented increases. and the perfor-

mance of the ideal observer increases. At some point the gains in
performance become minimal. When this point is reached. i t  is
reasonable to conclude that the descriptive model accurately repre-
sents most of the discrimination information.

Four levels of descriptive model (with successively less-restric-
tive assumptions) are described briefly below. This is followed b1- a
discussion of procedures for determining when the models have
accurately represented all the informaticln in a neuron's response.

It  should be kept in mind that, as the assumptions become less
restrictive. greater amounts of data are rcquired for accurate mea-
surement of the probabil i t ies in the models. In fact. as we wil l  see
later. the fourth and lcast restrictive model requires more data
than is practical to obtain with current electrophysiological proce-

dures.

Cluntins model

In the hrst level of descript ive model. we make the lbl lowing
conventional assumption (e.g., Barlow and Lcvick 1969a): Al l  rele-
vant discrimination infbrmation is contained in the sum of the
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spikes across all bins. Under this assumption and the assumption
of no temporal uncertainty, the likelihood ratio (Eq. 1) becomes

L:  P(Nl i l lP(Nla)  (J)

In this equation, N is the total number of spikes in the response
interval on a particular trial (i.e., N : N1 + N, .' . + N,), and
P(Nla) and P(NlB) are the probabilities for the total number of
spikes in the response interval. (Note that in this case the analysis
interval, n, equals the response interval, m.) ̂ lo apply the maxi-
mum-likelihood decision rule, the probability distributions
P(r I a) and P(x l0), also known as counting distributions or pulse-
number distributions (cf. Teich and Khanna 1985), must be mea-
sured. These distributions constitute the descriptive models (one

for each stimulus). Figure 2A shows counting distributions mea-
sured from a single neuron for two different stimulus contrasts. As
can be seen, any spike counts > I are more likely to have been
produced by stimulus 0 (solid bars). Thus the likelihood decision
iule is equivalent to placing a criterion between I and 2 spikes per

trial.
When uncertainty is introduced. a somewhat more complicated

decision rule is required

t  - 
f^P@(u)1p, 

u11!,or. lvp41o. uy @)

where Ma) is the total number of spikes in the response interval
for a starting temporal position of rr within the analysis interval. In
other words, N(iz) : N,*, t| . . . I N^*u. (Note that in Eq. 4 and
elsewhere in this paper, we are assuming that temporal uncer-
tainty has a uniform probability distribution. Other uncertainty
functions could easily be substituted, if necessary.)

Pattern model

The major limitation of the counting model is that it cannot
represent information carried in the temporal response pattern'
The following assumption defines a descriptive model that is capa-
ble of representing temporal pattern information: All relevant dis-
crimination information is contained in the sum and in the pat-

tern of spikes across bins, and the number of spikes observed in
any bin is probabilistically independent of the number observed in
all other bins. This class of descriptive model requires measuring
counting distributions for each temporal bin.

Consider first the case in which there is no temporal uncer-
tainty. If there is probabilistic independence between bins, then
the probability of a particular temporal pattern, that is, a particu-

lar list of spike counts (1{, , . . , N, ), is the product of the probabili-

ties ofthe count in each bin. In other words

P(N ' ,

and

A; B) = Pr(Nr lp)Pr(Ar, ld) .  .  .  P,(N,lB)

A ' ,  1 " )  -  P ' ( N ' l a ) P 2 ( N ,  l " ) . . . P , ( N , 1 " )P(N'.
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Thus the likelihood ratio (Eq./) becomes

r: l l  P,(^; lBVll P'(41") (r)
I  I  i l

where P,(r I a) and P,(x I B) are the probability distributions for the
Ith bin given stimulus a and stimulus B, respectively. Note that
these probability distributions are just counting distributions for

the individual bins; thus, construction of this descriptive model
requires measuring the counting distributions for each bin in the
anilysis interval. Figure 2,8 shows the counting distributions for
l0 bins. obtained from the responses ofa single neuron at two
stimulus contrasts.

nrc. 2. Examples of measured probability distributions used in the

ideal-observer analyses. These particular examples are for a simple cell in

cat visual cortex . A; counting analysis' Probability distributions ofthe num-

ber of spikes generated per trial for 2 contrasts of a drifting sine wave
grating. 

-Becau-e 
spike counts > [ are more likely to have been produced by

the higher-contrast stimulus (d), the optimal decision rule is to place a

criteri6n between 1 and 2 spikes/tial. B: pattern analysis. Probability dis-

tributions of the number of spikes generated per trial, in each of l0 tem-
poral bins, for 2 contrasts. The optimal decision rule involves computing
ihe product ofthe probabitities ofthe spike counts in each bin using the

distributions for the lower-contrast stimulus (a) and then using the distri-

butions for the higher-contrast stimulus (B). Stimulus a is picked if its
probability is higher, otherwise stimulus d is picked. Because the pattern

inalysis measures counting distributions for each temporal bin, it mea-

sures both rate and temporal pattern information'
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The likelihood decision rule would be applied in this case by the
use of the 20 counting distributions ( l0 for each stimulus) to com-
pute the probabilities ofthe spike counts in the bins. These proba-
bilities would then be substituted into Eq. 5 and the resulting
likelihood ratio checked to see if i t is greater than or less than 1.0.r
For example. suppose the response on a trial (the list of spike
counts in the bins) was 0, l, I, 0. 0. 0. 2, l. 0. l. The distributions
in Fig. 28 show that the probability of obtaining 0 spikes in the
hrst bin is 0.79 if the stimulus were p and is 0.96 if the stimulus
were cy. Similarly, the probability of obtaining 1 spike in the sec-
ond bin is 0.27 given stimulus p and 0.0 l8 given stimulus a. Pro-
ceeding in this fashion, we find that the numerator rn Eq. 5 is
0 .79  x0 .21x  0 .29  x  0 .61  x  0 .54  x  0 .56  x  0 .118  x  0 .31  x  0 .77  x
0.  154.  and the denominator  is  0.96 x 0.018 x 0.055 x 0.94 x
0.96 x 0.97 x 0.0091 x 0.045 x 0.96 x 0.0091.  Div id ing these
products gives a l ikelihood ratio of 16,610. Because this ratio is
> 1.0, the ideal observer would pick stimulus p on this trial.

When temporal uncertainty is introduced, the likelihood rule
becomes

U n 0 n

L : f l  P,( v, ^j .  utt  |  [ ]  P,{ \ , trv. i r)
u = 0  i = \  r : 0  i : l

( 6 )

Application of this decision rule is very similar to the no-uncer-
tainty rule (Eq 5); the only difference is that the products ofthe
probabilities must be computed for each possible response posi-
tion within the uncertainty interval and then summed across all
possible response positions. (Again, the temporal-uncertainty dis-
tribution is assumed to be uniform.)

Application of the patlern model often requires more data than
Ihe t'otmting model because there are more probability distribu-
tions to measure. Thus it is important to make optimal use of the
data when applying lhe pattern model. If the responses to the
stimuli are periodic, it is possible to reduce the number of probabil-
ity distributions that need to be measured. Specifically, it is only
necessary to measure distributions for the bins within one period
ofthe response, because the distributions within all the other pe-
riods are the same. More precisely, if / is the period of the response
(see Fig. lB), then for each bin (l) in the analysis interval

P,( . r  " ) :  P;( . r la)  and f , ( r  B) :  Pr( - r ld)  (7)

where.T - mod(i, i), if mod(i, 1) # 0: otherwise. T - /. (Note that
"mod" represents the modulo functionl i.e., I is the remainder
ot i l l .)

The counting model is a special case of the parlerir model. This is
easily seen by noting that the paltern model reduces to lhe counl-
ing model when the bin size is set to be the entire response interval
(i.e., so that there isjust I bin).

Another important special case of the pattern model is obtained
by assuming that spike trains are described by a Poisson process
(more precisely, an inhomogeneous Poisson process). The Poisson
process (which also describes the statistical properties of light) sat-
isfies the independence assumption that defines the paltern
model. This special case, which we call the Poisson pattern model
is developed in apprNnrx e. The Poi.r.ron pattern model is of inter-
est because it often yields discrimination performances similar to
that of the fill pattern model, but it requires less data to measure

r The probabilities in the bins were obtained by counting the numbers of
spikes observed in the bin and dividing by the number ofstimulus presenta-
tions. Ifno spikes are observed in a bin it can be problematic (and inaccu-
rate) to assume the probability is literally zero. This is because a spike
occurring in that bin during a test trial will completely dominate the deci-
sion. Specifically. the spike will force the likelihood ratio to be 0, infinite,
or undefined. To avoid this problem, we took the probability for empty
bins to be 0.5 divided by the number stimulus presentations (or response
periods). The Monte Carlo simulations described later show that this as-
sumption is reasonable.

the probability distributions. Siebert's (1970) model and some
others in the auditory literature are special cases of the Poisson
pailern model obtained by assuming a particular intensity func-
tion for the Poisson process.

Pattern-l model

The pattern model is based on the assumption that the number
of spikes observed in a time bin is statistically independent of the
number observed in other bins. This independence assumption
must be violated. at least to some extent, by all spike-generating
neurons simply because ofrefractory effects. Ifrefractoriness were
the only source ofprobabilistic dependence. then it would be rea-
sonable to expect that the dependence would only be a function of
the elapsed time from the most recent spike (e.g., Teich et al. 1978;
Young and Barta 1986). The next level of descriptive model is
based on the following assumption: All relevant discrimination
information is contained in the sum and in the pattern of spikes
across bins; and the number of spikes observed in a bin is, at most,
probabilistically dependent on when the previous spike occurred.
If the number of spikes observed in a bin is only dependent on
when the previous spike occurred, then the probabilittes in Eq. I
are given by the following products

p ( N , .  . . . .  A ;  p ) :  P ( r ,  d ) P , ( N , l r , .  d ) . . . P " ( , \ ; l 7 ,  , ,  t s )

and

P ( N ' .  .  . . . , \ ' , 1 " )  :  P ( 7 ,  l a ) P 1 ( N y  l f y ,  a )  . . . P " ( N "  7 - ,  ' ,  d )

where ?", is the waiting time (in bins) from the current bin (the i th
bin) to the previous spike (nonempty bin). Because I, refers to
events before the response. its probability does not depend on
which st imulus was presentedt therefore P(f r lP) - P(T' la). Thus
the likelihood ratio Eq. -1 becomes

I  t0 ro0 t000

NUMBER OF TRIALS

prc. 3. Example of Monte Carlo simulations used to determine the
amount of data and binwidths required for accurate descriptive models
(i.e.. probability distributions like those in Fig. 2) ofa neuron's response.
This example is for a pattern model. The procedure begins by selecting
parameters ofa synthetic spike generator (an inhomogeneous Poisson pro-
cess) so that it produces spike trains that roughly match those ofthe neu-
rons to be analyzed. In this example, the spike generator was mimicking an
auditory neuron responding to a I 00-Hz pure tone at a mean response rate
of 150 spikes/s in a temporal phase-discrimination task. A time delay was
picked to produce -779c correct by the mathematically exact ideal ob-
server (solid horizontal line). Curves show the performance of the pattern
model as a function of the number of trials used to measure the probability
distributions for various numbers ofbins per response period. (The error
bars represent + SD.) As can be seen. under these conditions, I 00 trials and
l0 bins/period are adequate for the paltern analysis to approach the exact
ideal-observer nerlormance.
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r : fi r1|,1r,, ll)l ff P1(N)7,, a) (8) when there is temporal uncertaintv the likelihood ratio is
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where P,(x | 7,, a) and Pt(xlT,, B) are the probability distributions
of the spikes counts for the ith bin given a waiting time of l, for
stimulus a and stimulus 0, respectively. Construction of this de-
scriptive model requires measuring the counting distributions for
each bin in the analysis interval, for each possible waiting time. To
measure all these distributions requires more data than for the
Dattern model.
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Pattern-2 model

The least restrictive assumption that will be considered here is
one in which the stochastic dependence is a function ofthe elapsed
times to the two most recent spikes: All relevant discrimination
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Frc.4. Amplitude spectra ofspike trains recorded from 3 auditory-nerve neurons that were responding to contlnuous

pure tones of near-threshold ampliiude (left) and near-saturation ampitude (rr'glrr). (Because this is only the right half of the

tl,.-.tri. Fourier transform, ihe ampliiudes of the harmonics should be doubled when comparing them with the dc

component.) If the responses'were staiistically stable and had no other systematic variability. then the.on\-prominent

.o*pon.nt, in the spiki trains would be at 0 Hz, at the stimulating frequency, and/or a1 its higher harmonics. This was true

except for the 347-Hz unit at the lowest intensities (A, left).
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information is contained in the sum and in the pattern of spikes and
across bins; and the number of spikes observed in a bin is. at most, Dt ̂l
p robab i l i s t i ca l l ydependen tonwhen thep rev ious twosp i kesoc -  P ( /V r ' ' ' 'N ' 1 " ) -P (T "s ' l a )P ' (N ' | ? ' ' ' S "a ) ' ' ' P ' (N " l r ' - . ' s ' - 1 ' a )

curred. Under this assumption the probabilities in 84. 1 are given where I is the elapsed time (in bins) from the previous spike to the
by the following products jth bin and S, is the elapsed time (in bins) from the second most

previous spike to the ith bin. Because Zt and Sr refer to events
P(Nr, . . . ,N, lB) :  P(TrSr lB)P(Nr l I , ,S, ,0)  . . .P, (N,1Tnr,Sut ,B)  before the response,  thei r  jo int  probabi l i ty  does not  depend on
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nc. 5. Average response rate of 3 auditory-nerve neurons responding to continuous pure tones of near-threshold ampli-

1nde (left) and near-saturation amplitude (right). Averages were computed with a 0.5-s running integrator. (The dashed line
indicates the spontaneous rate.) As can be seen, the responses of the neurons did not drift systematically over the l5-s
stimulus duration. Sizes of the fluctuations in average response rate are what would be expected lrom a stable random
process (see text and APPENDIX c).
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which stimulus was presented; therefore P(Zr, ,Sr l0) : P(Tr, When temporal uncertainty is present, the likelihood ratio be-

S, la). Thus the likelihood tatio (Eq. 1) becomes comes

Pi(Nilri,s,, By fr P,(14 | 4, s,, o) (10)
P,(&1r,.  si ,  a, r.r) ( l  l \
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L = 1 7

0 n 0 n

r :  > l l  P i (Ni lT i ,  S ' ,9 ,  r ) /  )  I I
"=0 i=l  , :O t  I

where P;(x | 4, S,, ") and P,(x | 7,, 5,, 0) are the probability distri--
butions of the spikes counts for the ith bin given waiting times of
Z and S,. Construction of this descriptive model requires measur-
ing the counting distributions for each bin in the analysis interval
for each possible pair of waiting times.

Higher-level models

It is not difficult to extend the descriptive models to higher and
less restrictive levels by allowing the possibility that the number of
spikes observed in a bin is dependent on even more ofthe previous

spike times. Indeed, if this process were continued, then all the
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tion information. especially at lower intensities (/e/).
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342 GEISLER

discrimination information contained in spike trains could be
measured (with no assumptions). no matter how complex the
temporal dependencies. This most general case is presented in
AppENDIX e. However. as mentioned earlier. measurement of the
probability distributions for the pattern-2 model requires more
data than is practical to obtain in a single-unit experiment.
Higher-level models would require even more data and hence are
not considered here. It is worth noting again that, when the re-
sponses are periodic, the number of distributions that must be
measured is reduced to some extent.

ET AL.

M E A S U R E M E N T  O F  I D E A L - O B S E R V E R
P E R F O R M A N C E

Once the probability distributions (which constitute the descrip-
tive models) have been measured, the next step is to evaluate per-
formance [P(C)] of the model in the discrimination task. One
method would be to compute the theoretical value of P(C) using
Eq. 2. Although this approach is elegant, it could be misleading
because it does not actually test performance but rather only pro-
vides a theoretical estimate of performance. A more empirical
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Ftc. 6. Neurometric functions (proportion correct as a function oftotal intensity in dB SPL) of 3 auditory-nerve neurons

in an intensity-discrimination task for 3 levels ofideal-observer analysis. lef: near-threshold relerence intensities. Rtgir:
near-saturation reference intensities. Trial durations were - 70 ms. Frequency indicated in each panel was both the CF ofthe
neuron and the frequency ofthe stimulus. Results show that temporal response pattern contributes substantial discrimina-
tion information. especially at lower intensities (ft,.f).
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