An Introduction to Logistic and Probit Regression Models
Goals

• Brief overview of logistic and probit models

• Example in Stata

• Interpretation within & between models
Binary Outcome

Examples:

- Yes/No
- Success/Failure
- Heart Attack/No Heart Attack
- In/Out of the Labor Force
Modeling a Binary Outcome

- Latent Variable Approach
 - We can think of y^* as the underlying latent propensity that $y=1$
 - Example 1: For the binary variable, heart attack/no heart attack, y^* is the propensity for a heart attack.
 - Example 2: For the binary variable, in/out of the labor force, y^* is the propensity to be in the labor force.

$$y^* = \alpha + \beta x + \varepsilon$$

$$y_i = \begin{cases}
 1 & \text{if } y_i^* > \tau \\
 0 & \text{if } y_i^* \leq \tau
\end{cases}$$

Where τ is the threshold
Logit versus Probit

- Since y^* is unobserved, we use do not know the distribution of the errors, ε

- In order to use maximum likelihood estimation (ML), we need to make some assumption about the distribution of the errors.
Logit versus Probit

• The difference between Logistic and Probit models lies in this assumption about the distribution of the errors

- Logit

\[\ln \left(\frac{p_i}{1 - p_i} \right) = \sum_{k=0}^{k=n} \beta_k x_{ik} \]

• Standard logistic distribution of errors

- Probit

\[\Phi^{-1}(p_i) = \sum_{k=0}^{k=n} \beta_k x_{ik} \]

• Normal distribution of errors
Probability Density Function (PDF) and Cumulative Distribution Function (CDF)

Figure 1.1 The Standard Normal and Standard Logistic Probability Distributions

Source: Park (2010)
Which to choose?

• Results tend to be very similar

• Preference for one over the other tends to vary by discipline
Simple Example in Stata

- Data: NLSY 97
- Sample: BA degree earners
- Dependent Variable: Entry into a STEM occupation
- Independent Variable: Parent education (categorical variable of highest degree: 2-year degree or lower versus BA and Advanced Degree)
Stata Output: Logit

```
. logit stemjob pared_ba pared_adv if sampleba==1

Iteration 0:  log likelihood =  -920.3815
Iteration 1:  log likelihood =  -913.98734
Iteration 2:  log likelihood =  -913.94785
Iteration 3:  log likelihood =  -913.94785

Logistic regression                                 Number of obs   =       2112
                                                   LR chi2(2)     =      12.87
                                                   Prob > chi2    =     0.0016
Log likelihood =  -913.94785                     Pseudo R2       =     0.0070

                      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------------- ------ -------- ------ ------ ----------------------
  stemjob
     pared_ba    .4771138   .1411431    3.38   0.001     .2004784    .7537492
     pared_adv    .3685459   .1490065    2.47   0.013     .0764986    .6605932
   _cons   -1.920446   .0957723   -20.05   0.000    -2.108156   -1.732736
```
Interpretation

- Logistic Regression
 - Log odds
 - Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-yr degree or less increases the log odds of entering a STEM job by 0.477.
Interpretation

• Logistic Regression
 • Log odds
 • Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-year degree or less increases the log odds by 0.477.

 • However, we can easily transform this into odds ratios by exponentiating the coefficients: \(\exp(0.477)=1.61 \)
 • Interpretation: BA degree earners with a parent whose highest degree is a BA degree are 1.61 times more likely to enter into a STEM occupation than those with a parent who have a 2-year degree or less.
• “logistic” command outputs odds ratios instead of log odds

```
. logistic stemjob pared.ba pared_adv if sampleba==1

Logistic regression                          Number of obs = 2112
LR chi2(2) = 12.87                           Prob > chi2 = 0.0016
Log likelihood = -913.94785                  Pseudo R2 = 0.0070

                                   Odds Ratio  Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------------------- ------------- ------------- -------- -------- ------------------
     stemjob                  Odds Ratio  Std. Err.      z    P>|z|     [95% Conf. Interval]
pared.ba                      1.611417    .2274404     3.38     0.001     1.221987    2.124952
pared_adv                     1.445631    .2154084     2.47     0.013     1.079501    1.935944
     _cons                      .1465416    .0140346   -20.05     0.000     .1214617    .1768001
```
Stata Output: probit

```
. probit stemjob  pared_ba pared_adv if sampleba==1
Iteration 0:  log likelihood =  -920.3815
Iteration 1:  log likelihood =  -913.95526
Iteration 2:  log likelihood =  -913.94785
Iteration 3:  log likelihood =  -913.94785

Probit regression
Number of obs    =      2112
LR chi2(2)       =     12.87
Prob > chi2      =     0.0016
Pseudo R2        =     0.0070

Log likelihood   =  -913.94785

                      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------- -------- ------------- ------- ------ ----------------------
  stemjob      0.2626883   0.0779146     3.37   0.001      0.1099786    0.415398
  pared_ba     0.2014769   0.0818166     2.46   0.014      0.0411193    0.3618345
  pared_adv    -1.136796    0.051066   -22.26   0.000    -1.236883    -1.036708
  _cons        -1.136796    0.051066   -22.26   0.000    -1.236883    -1.036708
```
Interpretation

• Probit Regression
 • Z-scores
 • Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-year degree or less increases the z-score by 0.263.
 • Researchers often report the marginal effect, which is the change in y^* for each unit change in x.
Comparison of Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Logistic Coefficient</th>
<th>Probit Coefficient</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Ed: BA Deg</td>
<td>.4771</td>
<td>.2627</td>
<td>1.8</td>
</tr>
<tr>
<td>Parent Ed: Advanced Deg</td>
<td>.3685</td>
<td>.2015</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Comparing Across Models

- It can be misleading to compare coefficients across models because the variance of the underlying latent variable (y^*) is not identified and can differ across models.
Some Possible Solutions to this Problem:

- **Predicted Probabilities**
 - Gives predicted values at substantively meaningful values of x_k

- **y^*-standardized coefficients**
 - $B_{k}^{s y^*}$ gives the standard deviation increase in y^* given a one unit increase in x_k, holding all other variables constant.

- **Fully standardized coefficients**
 - B_{k}^{s} gives the standard deviation increase in y^*, given a one standard deviation increase in x_k, holding all other variables constant.

- **Marginal effects**
 - The slope of the probability curve relating x to $Pr(y=1|x)$, holding all other variables constant
A Few Examples of Hypothesis Testing and Model Fit for Logistic Regression in Stata

- Likelihood Ratio
 - lrtest
- Wald test
 - test
- Akaike’s Information Criterion (AIC)/Bayesian Information Criterion (BIC)
 - estat ic
- Or for a variety of fit statistics
 - fitstat
References

