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Abstract
Typically, models of category learning are verified through behavioral exper-
iments with stimuli consisting of putatively independent dimensions such as
shape, size, and color. The assumption of independence is critical in both
the design of behavioral experiments and in the development of models and
theories of learning. Using the standard classification learning paradigm and
a common stimulus set, the current work demonstrates that the assumption
of independence is unwarranted. Systematic relations span stimulus dimen-
sions and govern learning performance. For example, shape is not indepen-
dent of size and color, because humans quantify size and color over shape
when shape is relevant to the categorization. This quantification is reflected
in natural language use (e.g., “blue triangle” as opposed to “triangle and
blue”). In this example, color and size are predicates and shape is the ar-
gument. Across four experiments, the difficulty of mastering a classification
rule can be predicted by the number of predicates that must be unbound in
order to free rule relevant stimulus dimensions.

Introduction

An important step in developing a theory or model of categorization is specifying how
stimuli are represented. Categorization researchers have begun to appreciate the complexity
of this task. Partitioning a stimulus into feature dimensions depends on relevant domain
knowledge (Wisniewski & Medin, 1994) and the comparison context (Medin, Goldstone, &
Gentner, 1993). In some cases, the main problem facing learners may be learning what the
feature are, rather than learning what the mapping from features to categories is (Schyns,
Goldstone, & Thilbaut, 1998). Developing the appropriate feature vocabulary may partially
explain what differentiates experts from novices (Biederman & Shiffrar, 1987). Matters can
be further complicated when stimulus feature dimensions are relationally connected to one
another (e.g., cause/effect, part/whole).
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Many researchers have tried to make headway on understanding category learning by
constructing laboratory situations that eliminate many of these representational complexi-
ties. In service of this goal, the canonical stimulus set used by category learning researchers
is easily and clearly partitioned into a set of seemingly orthogonal and independent stimulus
dimensions (e.g., Medin & Schaffer, 1978; Shepard, Hovland, & Jenkins, 1961; Nosofsky,
Gluck, Palmeri, McKinley, & Glauthier, 1994; Yamauchi, Love, & Markman, 2002). This
stimulus set consists of three binary-valued dimensions: size (e.g., small/large), shape (e.g.,
triangle/square), and color (e.g., blue/red). Few other stimulus sets (e.g., random dot
patterns) rival the popularity of the canonical stimulus set.

In this paper, we argue that complexities remain even in this highly constrained
stimulus set. In particular, relations exist across stimulus dimensions and these relations
play an important role in determining learning performance. Our results suggest that color
and size are quantified over shape which leads to difficulties in forming conjunctive rules
involving shape and either color or size. Our findings are in accord with previous research
that grants an important role for shape in object representations. For example, young
children tend to generalize new count nouns to objects of the same shape as a sample (Imai,
Gentner, & Uchida, 1994; Landau, Smith, & Jones, 1988). Theories of object recognition
give a central role to shape (Edelman, 1999; Ullman, 1996). Our findings qualify the
interpretation of numerous experimental studies utilizing similar stimulus sets, as well as the
models that have been developed to account for such studies. We propose a representational
account that makes allowances for the relations among stimulus dimensions (cf., Norman &
Rumelhart, 1975) and offer linguistic tests and empirical methods for inferring the nature
of people’s stimulus representations.

Relational Independence

Though not usually stated explicitly, the canonical stimulus set is assumed to consist
of three independent sets:

color = {red, blue} (1)
size = {small, large}

shape = {triangle, square}.

A stimulus is constructed by selecting one member from each set. The three selected
properties are unified in a single object which can be see as a container for the three
independent properties. One way to conceptualize this kind of representation is to assume
that each dimension is a function that takes the object identifier as an argument and
evaluates to the value that the object has on that dimension. The following example is for
an object whose size is large, whose color is red, and whose shape is triangle.

object (2)
color(object) = red

size(object) = large

shape(object) = triangle
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Table 1: The three category structures considered in the studies are shown. The category assignment
(either A or B) varies for the eight stimuli (consisting of three binary dimensions) across the three
problems.

Item I II IV
1 1 1 A A A
1 1 2 A A A
1 2 1 A B A
1 2 2 A B B
2 1 1 B B A
2 1 2 B B B
2 2 1 B A B
2 2 2 B A B

The functions on the left sides in Equation 2 return the member of each set in Equa-
tion 1 that is present. Although there is a binding between the entity and each dimension’s
predicate, these bindings have no influence on learning because they do not vary across
predicates or stimuli. In other words, learning would progress in the same fashion if the
learner simply knew which three properties were present. Importantly, there are no relations
(i.e., predicates) that span stimulus dimensions in Equation 2. For instance, information
about shape does not serve as an argument for a predicate concerning size. We refer to
representational schemes that lack cross-dimensional relations as being relationally inde-
pendent.

Relational independence makes it easy to construct categorization models and to de-
sign experiments. Instead of being consumed with issues related to stimulus representation,
researchers can focus on how the abstract structure of the categories (i.e., the assignment of
stimuli to categories) affects learning performance. In such studies, the assignment of stim-
ulus dimensions and their values is arbitrary. Often such assignments are counterbalanced
and the results are aggregated in statistical analyses, which allows researchers to focus on
how the abstract structure of the categories affects performance. For example, Shepard et
al. enumerated the six possible partitions (Types I-VI) of the eight stimulus items defined
in Equation 1 into two contrastive categories of equal size. People learned to classify the
eight items over numerous trials with corrective feedback and the relative difficulty of the
six problems was considered.

Of interest in the present work are three of these problems: Types I, II, and IV. These
category structures are shown in Table 1. Type I is a simple unidimensional structure in
which all items with a particular value on one dimension (the first dimension listed in Table
1) belong in one category and all items with the other value on that dimension are in
the other category. Categories following this rule are easiest for people to acquire. Type
II requires attending to two dimensions (the first two dimensions listed in Table 1), and
categories with this structure are typically harder to learn than are categories with the
Type I structure. Finally, Type IV requires attending to all three dimensions, and is more
difficult to learn than Types I and II. An important preliminary test of any new model of
classification learning has often been to ensure that it captures this pattern of data.

Shepard et al. has often been used as a benchmark against which models of category
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learning are compared (e.g., Anderson, 1991; Kruschke, 1992; Love, Medin, & Gureckis, in
press; Nosofsky et al., 1994; Nosofsky et al., 1994b). Shepard et al. has also served as the
conceptual blueprint for countless empirical studies (some of which have been mentioned
above). In this paper, we present data that qualify the interpretation of these studies
and models. We argue that the field’s characterization of the canonical stimulus set is
incorrect and that people’s stimulus representations are not relationally independent. In
particular we argue that shape serves as an argument for size and color. This relationally
dependency correctly predicts how the assignment of dimensions to the abstract category
structures shown in Table 1 modulates the difficulty order of Shepard et al.’s problems. The
predictions will be spelled out below.

Relational Dependence

We propose that a stimulus like a large, red, triangle is represented as

triangle (3)
color(triangle) = red

size(triangle) = large.

In contrast to Equation 2, the value of the shape dimension serves as the argument for
the color and size predicates. In other words, color and size are quantified over shape. The
stimulus is not a red object, rather it is a red triangle. The bindings between the shape value
and the color and size predicates are not trivial. The shape value changes across situations
and trials. Thus, attention is required to bind the shape value to its argument (Kahneman,
Treisman, & Gibbs, 1992). Disrupting spatial attention should lead to a representation
that is more like that shown in Equation 2, which is functionally equivalent to a bundle of
independent properties.

A simple linguistic test can determine whether a stimulus set is relationally depen-
dent. The dimensions in relationally dependent stimulus sets can enter into adjective/noun
relationships. In particular, when one stimulus dimension can describe other stimulus di-
mensions, but the reverse cannot be done, then the stimulus set is relationally dependent.
For example, if a stimulus can be described as a “large triangle” or a “red triangle”, but not
as a “triangle large” or “triangle red”, then the stimulus set is relationally dependent. In
the present case, size and color behave as adjectives (i.e., one-place predicates or functions),
whereas shape acts as the noun (i.e., entity or argument). For relationally independent
dimensions, descriptions can contain simple conjunctions of properties. For example, it is
quite natural to say “The object is large and red” whereas it is less natural to say “The
object is triangle and red.” That is, which dimensions are nouns and adjectives is diagnostic
of the dimensions’ roles in the representation. In relationally independent stimulus sets, all
dimensions are adjectives.

Importantly, the relationally independent and relationally dependent stimulus ac-
counts differ in their predictions with regards to classification learning performance. The
predictions are intimately tied to the task demands of the classification learning task. Clas-
sification learning can be characterized as a hypothesis testing procedure in which people
explicitly test rules that are constructed over independent boolean literals (Bruner, Good-
now, & Austin, 1956; Feldman, 2000; Nosofsky et al., 1994b). Relationally independent
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representations are ideally suited to this type of induction operation. The values (e.g., red,
large, and triangle) are readily accessible as inputs to a rule construction process. In rela-
tionally independent representations, each dimension is only related to each other dimension
by virtue of being properties of the same object. Therefore, it should be just as hard to
learn a Type II rule involving shape and color as it is to learn a rule involving color and
size.1

In contrast, relationally dependent representations are not well suited for acquiring
conjunctive rules. The difficulty of acquiring a rule depends on which dimensions are rel-
evant. With the canonical stimulus set, conjunctive rules involving color and size should
be readily acquired because these dimensions are relationally independent, whereas rules
combining shape and either size or color should be more difficult because shape serves as
an argument to these predicates. Rule formation requires treating the boolean literals, such
as triangle and red, as independent. Thus, the cognitive system must either re-represent
the stimulus set or engage a different set of learning process that are not compatible with
the task demands of classification learning when dimensions sharing a relation are relevant
to a conjunctive classification rule. Either way, we predict that rules involving interrelated
dimensions will be more difficult to acquire.

It is important to note that we are not arguing that relationally dependent stimulus
sets always lead to poorer performance. For example, acquisition of one dimensional rules
(e.g., the Type I problem) should not be affected by relations across stimulus dimensions as
these rules do not integrate information across dimensions. Similarly, perceptual decision
tasks that involve selectively attending to one dimension while ignoring the other dimensions
(e.g., tests of perceptual separability, Garner, 1974; Lockhead, 1966) should not be affected
by the relations considered above. We are not claiming that shape and size or color are
integral.

Some tasks may even benefit from relationally dependent representations. For exam-
ple, people prefer analogies between two representations that contain matching relational
structures that span dimensions (Gentner, 1983, 1989). It is often quite difficult to form
analogies in the absence of interconnecting relations (Keane, Ledgeway, & Duff, 1994).
Though not considered in this paper, many learning problems may also benefit from rela-
tionally dependent representations. For example, in case-based reasoning, previously solved
examples are stored in memory and are retrieved and adapted (perhaps through an analog-
ical process) to fit the current situation (Kolodner, 1993). Situations that encourage this
type of learning may not share the task demands of classification learning and therefore
may be more like analogy and benefit from inter-stimulus structure which can facilitate
inference. Given the presumption that most real-world stimulus sets are relationally depen-
dent, it would be sensible for many real-world tasks to be well matched with this type of
representation.

The remainder of the paper is organized as follows: Experiments 1 and 2 test our
account of the canonical stimulus set within a standard classification learning task. Exper-
iment 3 couples the classification learning task with a secondary task that demands spatial
attention in order to test our prediction that maintaining relations across stimulus dimen-
sions requires attentional resources. We predict that under a load, the disadvantage of

1We use the term rule loosely. Our theoretical claims would not differ if rule-like behavior arose by pairing
a selective attention mechanism with stored clusters or exemplars.
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forming conjunctive rules over shape and either size or color will disappear. In Experiment
4, a new stimulus set involving part relations is considered in order to evaluate the potential
of applying our analyses to other domains.

Experiment 1

The canonical stimulus set was used (see Equation 1). Small shapes were 1.5 by 1.5
cms (which subtended 2.1 ◦ of visual arc) and large shapes were 3.0 by 3.0 cms. Experiment
1 tests the claim that the canonical stimulus set is relationally dependent. We predict that
acquiring the Type II category structure when shape is one of the two relevant stimulus
dimensions will be more difficult than when shape is irrelevant and color and size are the
two relevant dimensions (i.e., shape is assigned to the third stimulus dimension in Table 1).
If the three stimulus dimensions are relationally independent, no differences between these
two conditions should be observed. The Type IV problem is also included for comparison.
We expect to replicate previous results and find Type II (overall) to be easier to learn than
Type IV.

Design and Subjects

Subjects in the experiments were undergraduates at the University of Texas who
received course credit in exchange for their participation. Subjects were randomly assigned
to conditions. Three groups of 26 subjects were run to test the critical hypotheses. One
group was given Type IV categories and the other two were given Type II categories. One
Type II group, the shape irrelevant group, was given categories in which color and size were
relevant to categorizing the stimuli, and the other group, the shape relevant group, was
given categories in which shape and one of the other two dimensions (either color or size)
were relevant.

Stimuli and Procedure

Each subject completed 128 learning trials. On each trial, a stimulus was presented
on a CRT monitor with a dark background and the subject indicated whether the item was
in category A or B by pressing the corresponding key. The subject was then provided with
corrective feedback (both auditory and visual) for 1500 ms, followed by a 1000 ms inter-trial
interval. Trial order was randomized for each subject within blocks. The first two blocks of
trials consisted of one presentation of each stimulus. The subsequent seven blocks consisted
of two presentations of each stimulus. The assignment of dimensions (when not constrained
by the experimental design) and values to the abstract category structures shown in Table
1 was randomized for each subject.

Results and Discussion

Two dependent measures were used to compare subjects’ learning performance across
conditions: overall accuracy (the typical performance measure used in learning experi-
ments), and the proportion of subjects reaching a learning criterion of correct trials in a
row. This latter criterion was used as a dependent variable, because the Type II and Type
IV category structures differ in the degree to which particular sub-optimal rules yield ac-
curate performance. For example, a one dimensional rule can yield 75% accuracy for the
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Table 2: Mean accuracy and the proportion of subjects reaching the learning criterion for each
category type as a function of task.

Type II (shape irrelevant) Type II (shape relevant) Type IV
Expt. 1 (single task) .85 (24/26) .77 (18/26) .74 (13/26)
Expt. 2 (single task, text) .77 (31/40) .71 (23/40) .75 (20/41)
Expt. 3 (dual task) .68 (13/29) .67 (15/29) .69 (4/29)

Type IV problem, but it only yields chance performance (i.e., 50% accuracy) for the Type
II problem. In light of this observation, the proportion of subjects reaching the criterion
offers a purer measure of mastery than does overall accuracy.

Table 2 displays the results from Experiment 1. Consistent with our prediction,
subjects given Type II categories defined using color and size attained higher accuracy levels
than subjects given such categories defined using shape and one of the other dimensions,
t(50) = 2.27, p < .05. This prediction also holds when the proportion of subjects reaching
criterion is analyzed, χ2(1)=4.46, p < .05, though not all expected cell counts are above 5.
Accuracy was higher for the shape irrelevant Type II problem than for the Type IV problem,
t(50) = 3.56, p < .001, whereas the Type II shape relevant and Type IV problems were
not reliably different, t< 1. This pattern of results was mirrored by the criterion measure,
χ2(1)=11.34, p < .001 and χ2(1)=2.00, p≈ .16, respectively.

Following learning, subjects completed a questionnaire in which they indicated
whether they used a rule to categorize the stimuli. Subjects responding affirmatively stated
their classification rule for categories A and B. Of particular interest is the language used
by the subjects given the Type II categories where shape was not relevant. Nine subjects
provided a classification rule that involved quantification (e.g., “small, blue object or a
large, red object”), while 13 subjects did not explicitly quantify (e.g., “small and blue or
large and red”). Those who described their categorization rule by quantifying over an entity
were significantly less accurate than those who did not (0.84 vs. 0.91), t(20)=2.57, p < .05.

Evaluating Alternative Accounts

One alternative explanation for the relatively poor performance of the Type II shape
relevant subjects is that shape might be less salient than the other dimensions and thus
people may first attempt to construct rules on the more salient dimensions. To rule out
this possibility, three groups of 16 subjects completed the Type I problem with the category
relevant dimension either being shape, color, or size. Subjects in all three groups reached the
learning criterion and no reliable difference in accuracy was observed across groups, F< 1.
In fact, all three groups had an overall accuracy level of .96. This study has the virtue
of being procedurally identical to Experiment 1, but may lack the sensitivity necessary to
reveal small differences in dimensional salience.

To rule out this possibility, pairwise similarity ratings (8 X 7=56 ratings on a one to
nine scale) were collected from 36 subjects. The salience of each dimension was calculated
as the difference in mean similarity of stimulus pairs that matched on the dimension minus
the mean similarity of pairs that mismatched on the dimension. There was a significant
effect of dimension, F(2,70)=11.97, MSe=10.34, p ≈ 0. Shape matches increased similarity
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Table 3: MDS recovers the three dimensions of shape, size, and color from pairwise similarity ratings
of the eight stimulus items.

Item Dim. 1 Dim. 2 Dim. 3
111 -2.69 -1.44 2.03
112 -2.63 -1.78 -1.70
121 -1.92 2.32 1.59
122 -1.86 1.97 -2.07
211 2.06 -1.95 2.22
212 1.97 -2.48 -1.71
221 2.49 1.96 1.57
222 2.58 1.40 -1.91

more than color matches (1.94 vs. 0.92, t(35)=4.47, p ≈ 0) and size matches (1.94 vs. 1.13,
t(35)=3.03, p < .01).

In order to confirm that the operable dimensions were shape, color and size, the mean
similarity ratings were transformed into dissimilarities (i.e., nine minus the rated similarity)
and the 8 X 8 dissimilarity (i.e., distance) matrix was subjected to multidimensional scaling
(MDS). Metrical MDS reduced the proximity data to three dimensions corresponding to
shape, color, and size, verifying that people interpreted the stimulus set to have the expected
dimensions. The coordinates of the eight stimuli are shown in Table 3. The three dimensions
in the table correspond to shape, size, and color (in that order). The eigenvalues for the
three dimensions are 42.27, 30.30, and 27.79, respectively. The eigenvalue for the fourth
dimension was not distinguishable from zero.

The MDS analysis of the pairwise similarity ratings confirmed that subjects were
using the three intended dimensions. One interesting question is whether any effect of
relational dependence on the similarity ratings can be seen. Shape plays a central role
in the relationally dependent interpretation of the stimulus set (see Equation 3). One
prediction from this observation is that shape matches will weigh more than size and color
matches. The analyses above support this prediction. A more subtle prediction based on
the alignment of object representations is that shape matches will highlight size and color
matches more than size matches will highlight color matches and vice versa. This prediction
was also confirmed. The effect of size and color matches on similarity conditioned on shape
matches (i.e., ((size or color match - size or color mismatch) | shape match) - ((size or
color match - size or color mismatch) | shape mismatch) is greater (i.e., less negative) than
the effect of size matches conditioned on color matches and vice versa (-0.64 vs. -1.21,
t(35)=2.02, p ≈ .051). Ceiling effects led to the negative means. Notice that this ceiling
effect works strongly against the borderline effect found in the preceding analysis because
shape matches led to higher ratings than size or color matches (see analyses above).

Experiment 2

Experiment 1 yielded a dramatic result: despite the fact that shape is more salient
than color or size, categories defined by a conjunction of shape and either size or color are
more difficult to learn than categories defined by a conjunction of size and color. Experiment
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2 replicates Experiment 1 in order to rule out the possibility that Experiment 1’s surprising
result was a statistical anomaly. Experiment 2 also extends Experiment 1 by considering a
different stimulus set. The procedure and design of Experiment 2 are identical to that of
Experiment 1, but the stimuli in Experiment 2 are verbal descriptions of the stimuli shown in
Experiment 1. For example, in Experiment 1 large, red, triangle was displayed as a picture,
but in Experiment 2 the text “large”, “triangle”, “red” is shown (displayed vertically with
one stimulus dimension per line). Because color and size should be quantified over shape,
we expect the same pattern of results in Experiment 2 as we observed in Experiment 2,
despite the fact that the stimulus presentation encourages participants to treat the three
values for each stimulus independently.

Design and Subjects

The design of Experiment 2 is identical to Experiment 1. One hundred twenty-one
undergraduates at the University of Texas participated in Experiment 2 in exchange for
course credit.

Procedure

The procedure was identical to that of Experiment 1. The sole difference between the
experiments was the stimulus set. In Experiment 2, stimuli consisted of verbal descriptions
of the geometric stimuli shown in Experiment 1. Each stimulus dimension was displayed on
consecutive lines (e.g., “blue” above “large” above “triangle”). The vertical order in which
the dimensions were displayed was randomized for each subject and was held constant across
trials.

Results and Discussion

Table 2 displays the results from Experiment 2. The results mimic those of Experi-
ment 1. Consistent with our prediction, subjects given Type II categories defined using color
and size attained higher accuracy levels than subjects given such categories defined using
shape and one of the other dimensions, t(78) = 2.20, p < .05. This prediction also holds
(as a trend) when the proportion of subjects reaching criterion is analyzed, χ2(1)=3.65, p
≈ .06. Accuracy for the shape irrelevant Type II problem was not significantly better than
for the Type IV problem, t< 1. However, a significant advantage for the Type II shape
irrelevant problem over the Type IV problem was observed when the proportion of subjects
reaching criterion is considered, χ2(1)=3.65, p < .01. The Type II shape relevant displayed
lower (though not reliably lower), accuracy than the Type IV problem, t(79) = -1.53, p
≈ .13. Similarly, a non-reliable disadvantage was observed in the criterion data, χ2 < 1.

As in Experiment 1, subjects completed a questionnaire at the end of the experiment
in which they indicated whether they used a rule to categorize the stimuli. Subjects re-
sponding affirmatively stated their classification rule for categories A and B. In Experiment
1, subjects in the shape irrelevant condition who used quantifying language to describe the
rule (e.g., “small or blue object”) were less accurate than those who did not. Interestingly,
no subjects in Experiment 2’s Type II shape irrelevant condition used quantifying language.
This result is in accord with the idea that the text stimuli encourage the subjects to view the
stimulus dimensions as independent. Despite this manipulation, the difficulty of forming
rules involving shape and another dimension was still observed.
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Experiment 3

Our explanation for the difference in performance for the shape relevant and shape
irrelevant Type II problems in Experiments 1 and 2 is that the dimensions of color and size
are quantified over shape. Object file theories of visual object representation suggest that
attention (and in particular spatial attention) is required to bind together the attributes of
objects (Kahneman et al., 1992). Thus, if spatial attention were disrupted during category
acquisition, people might have difficulty binding the color and size dimensions with the
shape dimension. Thus, this manipulation would eliminate the observed difference between
performance on Type II shape relevant and irrelevant problems. In effect, disrupting spatial
attention should lead to relational independence.

Design and Subjects

To test this possibility, three additional groups of 29 subjects were run. As in Ex-
periments 1 and 2, one group learned Type IV categories, one learned Type II categories
where the rule was defined over color and size, and one learned Type II categories where the
rule was defined over shape and one of the other dimensions. All of these groups learned
the categories in a dual-task setting in which they had to repeatedly tap the four arrow
keys on the keyboard in a fixed order on each trial (the order was varied across trials).
This manipulation was expected to reduce the available spatial working memory, which we
anticipated would increase the likelihood that shape would be treated as independent of the
other dimensions.

Procedure

Subjects completed a secondary task during the learning task. Subjects were shown a
sequence of four keys at the beginning of a trial (e.g., up, left, down, right) and had to repeat
this sequence by pressing the arrow keys. After completing the sequence correctly three
times at a sufficient pace (less than 2500 ms for each sequence), the geometric stimulus was
shown. Subjects continued repeating the sequence correctly at the requisite speed until they
were ready to respond A or B at which point they replaced the last member of the sequence
with either A or B. After responding, the stimulus was no longer shown on the screen and
the subject received corrective feedback. Trials in which the subject did not follow this
procedure were aborted.2 All subjects received training in this procedure (without category
stimuli) prior to data collection. Each key sequence was randomly generated for each trial.

Results and Discussion

The results are shown in Table 2. The main prediction was confirmed — performance
in the Type II shape irrelevant and shape relevant problems did not differ significantly.
In fact, pairwise comparisons of the accuracy levels for all three conditions did not differ
significantly, t < 1, though all three conditions displayed accuracy levels above chance, p
≈ 0. The criterion data also revealed little difference between the two Type II conditions,
χ2(1)=0.27, p> .10. This result was probably not due to both groups being at a floor level
of performance as a result of the dual task, because subjects in both the shape relevant and

2An average of 13.02 trials were aborted for each subject with no strong error patterns emerging across
conditions.
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irrelevant group were more likely to reach the learning criterion than were subjects in the
Type IV group, χ2(1)=6.74 and 9.47 respectively, p < .01.

Experiments 1 and 2 suggested that quantifying over shape (which should require
attention to establish the binding) led to poorer performance for Type II shape relevant
subjects compared to the Type II shape irrelevant subjects. In Experiment 3, a manipula-
tion that reduced the likelihood that size and color would be quantified over shape eliminated
the difference in difficulty of learning of Type II categories in which shape was relevant to
the classification rule. In contrast to Experiments 1 and 2, shape relevant subjects actually
outperformed shape irrelevant subjects in terms of reaching criterion. Taken together, the
experiments provide strong support for the hypothesis that shape is not independent of
size and color in the representations developed during category learning. Experiment 3 also
offers a new methodology for evaluating acquired representations.

As in the previous experiment, subjects completed post experiment questionnaires.
Because we assume that subjects could not form bindings involving shape during the course
of learning, we predict that differences in language will simply reflect word choice and not
be indicative of underlying differences in the representations acquired during learning. As
predicted, there was almost no difference in performance for the 6 subjects who described
the proper rule using quantifying language in the shape irrelevant Type II condition and
the the 14 subjects who used non-quantifying language in this condition (.76 vs. .75), t < 1.

Experiment 4

Before discussing the implications of these findings for the exploration of category
learning, we examine one further issue. The studies described so far suggest that predicting
the difficulty of a classification learning task requires an analysis of stimulus representation.
When a category structure involves a rule that considers a pair of properties that are logi-
cally independent (i.e., they are members of different sets), the rule is easier to learn when
relational dependencies do not have to be broken in order to separate the two properties.

In the first three experiments, the relational dependency involved properties that were
quantified over shape. In Experiment 4, we consider the case of parts. In particular, the
stimuli are constructed from the following sets:

drive = {CDROM, DV D} (4)
processor = {budget, performance}

computertype = {desktop, laptop}.

This stimulus set also fails our linguistic test for relational independence (e.g., it
is awkward to say “The object is laptop and budget processor”). The test for relational
dependence, while not as awkward, does not sound as natural as it did for the shape stimuli
(e.g., “This is a DVD laptop” vs. “This is a red square”). If we represent this stimulus set
in a manner analogous to our relationally dependent scheme for shape, we would get:

laptop (5)
drive(laptop) = dvd

processor(laptop) = budget.
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This scheme would predict that learning Type II rules involving drive and processor
should be easier than learning Type II rules involving computer type and one of the other
two dimensions. However, the awkwardness of the adjective-noun sentence above suggests
we should try a different approach. In computers, drives and processors are not properties,
but rather parts. In order to capture this intuition, we simply add a part relation to the
representation:

laptop (6)
part of(laptop, drive(laptop) = dvd)

part of(laptop, processor(laptop) = budget)

The linguistic test for this particular form of relational dependence is naturally stating
that one dimension “has” another dimension, but not vice versa. For example, it is natural
to say “The laptop has a DVD” or “The laptop with a DVD”, but it is not natural to say
“The DVD has a laptop” or “The DVD with a laptop”. Beyond our intuitions, Markman and
Makin (1998) found that this is the preferred phrasing for referring to parts and entities.
The test excludes relationally dependent items involving properties. For example, it is
unnatural to state “The triangle with a red.”

In the computer stimulus set, computer type plays a role analogous to shape in the
canonical stimulus set in that both dimensions are entities and appear as arguments in all
predicates. In the canonical stimulus set, Type II rules were more difficult to learn when
shape was relevant because subjects had to adopt a learning strategy inconsistent with
the task demands of classification learning or had to re-represent the stimulus set (e.g.,
unbind the shape value). In contrast, conjunctive rules could easily be formed over size and
color because the values of these dimensions were readily accessible and not bound to any
predicate.

In the computer stimulus set, all dimensions are bound to predicates. As with the
canonical stimulus set, we predict that the relative difficulty level of a Type II rule should
be related to the number of predicates that must be unbound in order to “free” the rule
relevant literals. In contrast to the canonical stimulus set, rules involving the base dimension
(i.e., computer type) and one of the other dimensions (either drive or processor) should be
easier to learn than those involving the two other dimensions. To form a rule involving
computer type and either drive or processor, one part of predicate must be decomposed,
whereas both part of predicates must be unbound to learn a rule involving the two parts
(see Equation 6) .

Thus, the introduction of the part of relation leads to a set of predictions that con-
trast sharply with those of Experiments 1 and 2. Learning conjunctive rules involving the
base dimension should now be easier than learning rules that involve the other two di-
mensions. A cross experiment prediction (which should be evaluated with caution) is that
performance levels for Type II (overall) should be lower in Experiment 4 than in Experi-
ments 1 and 2, because more relations must be unbound.

Design, Stimuli, Subjects, and Procedure

The design of Experiment 4 follows from the previous experiments. The stimuli
in Experiment 4 differs from those in previous experiments. Stimuli varied along three
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Table 4: Mean accuracy and the proportion of subjects reaching the learning criterion for each
category type in Experiment 4.

Type II (computer type irrelevant) Type II (computer type relevant) Type IV
.61 (11/33) .71 (15/29) .72 (10/32)

binary dimensions: computer type (laptop or desktop), drive type (DVD or CD ROM).
and processor type (budget or performance). The computer type dimension served a role
analogous to that of the shape dimension in the previous experiments. In the Type II
computer type relevant condition, computer type and one of the other two dimensions
(either drive or processor type) were relevant to categorizing the stimuli, while in the Type
II computer type irrelevant condition the relevant dimensions were drive and processor type.
As in the previous experiment, a third group of subjects trained on the Type IV structure.
Subjects assigned stimuli to company A or B instead of categories A or B. Ninety-Four
undergraduates at the University of Texas participated in Experiment 4 in exchange for
course credit. The procedure was identical to that of Experiment 2. Experiment 4 followed
the methods from Experiment 2 for displaying and randomizing the text-based stimuli.

Results and Discussion

Table 4 displays the results from Experiment 4. Consistent with our prediction, sub-
jects given Type II categories defined using computer type and one of the other dimensions
attained higher accuracy levels than subjects given such categories defined using drive and
processor type , t(60) = 2.25, p < .05. Although not significant, this prediction also held
when the proportion of subjects reaching criterion is analyzed, χ2(1)=2.14, p ≈ .14. The
Type IV problem also showed an advantage over the computer irrelevant Type II problem,
t(63) = 3.54, p < .01 and χ2(1)=2.64, p ≈ .10. No differences between the computer type
relevant Type II and Type IV problem approached significance.

One prediction was that the Type II problems involving the computer stimulus set
would be more difficult overall than the Type II problems involving the shape stimulus
set. An informal comparison of Experiments 2’s data which involved the shape stimulus
set in verbal form supports this prediction, though care should be taken in making cross
experiment comparisons, especially given the number of differences between the two stimulus
sets.

Unlike the previous experiments, neither Type II problem led to performance superior
to that of the Type IV problem. One explanation is that the increased difficulty level of
Experiment 4 (indicated by the overall performance levels) favors category structures like
the Type IV problem in which suboptimal rules can lead to above chance performance.

Questionnaire Analysis. As in the previous experiments, following learning, subjects
completed a questionnaire in which they indicated whether they used a rule to categorize
the stimuli. Subjects responding affirmatively stated their classification rule for companies
A and B. Of particular interest is the language used by the subjects given the Type II
categories where computer type was relevant. Six subjects provided a classification rule
that involved treating the non-computer type dimension as a part (e.g., “a laptop with a
DVD or a desktop with a CD ROM”), while six subjects did not express any relationship
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Table 5: MDS recovers the three dimensions of computer type, processor, and drive from pairwise
similarity ratings of the eight stimulus items.

Item Dim. 1 Dim. 2 Dim. 3
111 -2.54 -2.09 1.98
112 -2.39 -1.92 -2.23
121 -2.26 2.16 2.02
122 -2.17 2.34 -2.00
211 2.16 -2.41 2.00
212 2.25 -2.11 -2.23
221 2.35 1.87 2.26
222 2.60 2.16 -1.81

(e.g., “a laptop & DVD or desktop & CD ROM”). Those who described their categorization
rule with part language tended to perform better than those who did not (0.87 vs. 0.72),
t(10)=1.76, p ≈ .11. Notice that this predicted finding runs counter to Experiment 1. In
Experiment 1, subjects who used independent language performed better than subjects
using quantifying language. The difference between part and property language appears
critical.

Similarity Ratings. In Experiment 1, an analysis of pairwise similarity ratings indi-
cated that shape was more salient than color or size despite the fact that the shape relevant
Type II problem was more difficult that the shape irrelevant Type II problem. Following
Experiment 1, pairwise similarity judgments (8 X 7=56 ratings on a one to nine scale) were
collected from 31 subjects. The salience of each dimension was calculated as the difference
in mean similarity of stimulus pairs that matched on the dimension minus the mean similar-
ity of pairs that mismatched on the dimension. There was a significant effect of dimension,
F(2,60)=7.71, MSe=4.75, p < .01. As predicted, computer type matches increased similar-
ity more than did drive type matches (2.16 vs. 1.40, t(30)=3.49, p < .01) and processor
type matches (2.16 vs. 1.62, t(30)=2.38, p < .05). Considering the combined results from
Experiment 1 and 4, saliency proves to be a poor predictor of the difficulty of acquiring
Type II rules. This is not to say that saliency did not affect the results (cue saliency surely
played a role in determining performance) , but rather its effect was insufficient to determine
the pattern of results.

In order to confirm that the operable dimensions were computer, drive and processor
type, the mean similarity ratings were transformed into dissimilarities (i.e., nine minus the
rated similarity) and the 8 X 8 dissimilarity (i.e., distance) matrix was subjected to multi-
dimensional scaling (MDS). Metrical MDS reduced the proximity data to three dimensions
corresponding to computer, drive, and processor type, verifying that people interpreted the
stimulus set to have the expected dimensions. The coordinates of the eight stimuli are shown
in Table 5. The three dimensions in the table correspond to computer type, processor, and
drive (in that order). The eigenvalues for the three dimensions are 43.98, 36.66, and 34.32,
respectively. The eigenvalue for the fourth dimension was not distinguishable from zero.

Like shape in its stimulus set, computer type plays a central role according to the
relationally dependent interpretation of the stimulus set (see Equation 6). One prediction
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from this observation is that computer type matches will weigh more than processor and
drive matches. The analyses above support this prediction (as they did for shape in Exper-
iment 1’s analyses). An analysis of Experiment 1’s pairwise similarity data also revealed
a relational dependency effect in which shape matches highlighted size and color matches
more than size matches highlighted color matches and vice versa. Although the classifica-
tion learning predictions for Experiments 1 and 4 differ, the predictions for the highlighting
effect are the same. As predicted, computer type matches highlighted processor and drive
matches more than processor matches highlighted drive matches and vice versa. The effect
of processor and drive matches conditioned on computer type matches (i.e., ((processor or
drive match - processor or drive mismatch) | computer type match) - ((processor or drive
match - processor or drive mismatch) | computer type mismatch) is greater (i.e., less neg-
ative) than the effect of processor matches conditioned on drive matches and vice versa
(-0.80 vs. -1.24, t(30)=2.13, p < .05). Ceiling effects led to the negative means. Notice that
this ceiling effect works strongly against the effect found in the preceding analysis because
computer type matches led to higher ratings than processor or drive matches (see above
analyses).

General Discussion

There are three main issues that we want to highlight in these studies. First, even with
very simple stimuli like those that have been used in previous studies of classification, there
are relational dependencies among dimensions that significantly influence ease of learning.
These dependencies are evident in the language that participants use to describe the items.
In Experiments 1-2, with the stimulus set involving shapes, two of the dimensions were
described by adjectives and one by a noun. We suggested that this phrasing reflected
that the adjectives were being predicated of the entity described by the noun. Consistent
with this analysis, rules involving pairs of predicates were easier to learn than were rules
involving a predicate and the entity it described. Further evidence for this binding came
from Experiment 3, in which a second task that imposed a spatial memory load appeared
to allow people to treat the shape separately from the predicates.

Finally, Experiment 4 focused on a stimulus set in which a particular entity had parts.
In this case, the language people used to describe the parts involved a relation between the
part and the entity. We suggested that if people represent parts as a relation between the
part and the entity, then conjunctive rules involving the two arguments to a single part
relation should be easier to learn than should conjunctive rules involving arguments from
different relations. This prediction was also supported. Like Experiments 1-3, the difficulty
of forming conjunctive rules was predicted by the number of relations (i.e., predicates) that
needed to be decomposed (i.e., unbound) in order to free the literals necessary for rule
formation.

Previous critiques of category learning research have focused on the generalizability
of the results. In an attempt to understand category learning, people have selected stimulus
sets that are assumed to have relationally independent dimensions. In practice there are few
sets of dimensions that people treat as relationally independent. In fact, interactions are
even observed for sensory stimulus dimensions of different modalities (Marks, 1989). Thus,
models that account for the standard findings in Shepard et al.’s study do not generalize to
most natural stimuli. For example, it is difficult to identify the independent dimensions that
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characterize complex stimuli like birds, tables, or faces. The present results suggests that
category learning research also faces issues of internal validity. In particular, the present
work argues that the search for principles of category learning that are independent of the
particular way that stimuli are represented is ill-advised.

In addition to issues of stimulus representation, the line of research following from
Shepard et al. has focused on one induction task, namely classification learning, despite ev-
idence that comparable induction tasks (e.g., inference learning and unsupervised learning)
lead to contrasting patterns of acquisition (Love, 2002; Yamauchi et al., 2002; Yamauchi &
Markman, 1998) This line of research has been productive, but has only addressed limited
aspects of human categorization (Love, 2001; Schank, Collins, & Hunter, 1986). These issues
of ecologically validity loom large — rarely do humans learn about easily dimensionalized
stimuli with ever-present corrective feedback.

Taken together, these results provide an important caution about developing models
of classification that are too strongly based on the structure of the task typically given to
subjects. The stimuli in the current study are developed along the lines of those used in
previous research. They have a small number of clearly separable dimensions with binary
values. However, the natural way that the perceptual system provides representations for
these items does not treat them as independent. This observation suggests that there may
be few cases in which there are feature dimensions that are treated as logically independent.
This observation argues strongly that general principles that govern ease of category learning
(e.g., Feldman, 2000) cannot be defined without consideration of the principles that govern
how representations are formed (Markman, 1999; Shanon, 1988). In fact, the latter set of
principles may play a larger role in determining category learning performance than does
the logical structure of categories (cf., Love, 2002, in press).

Thus, we advocate an approach to the study of categorization that extends current
research in two directions. First, we recommend that researchers pay more careful attention
to the ways that people represent the stimuli that are being presented. Models that require
relationally independent dimensions should include some test that the dimensions are in fact
independent. Furthermore, some acknowledgment of this independence assumption would
be useful to constrain the range of generalization of the studies.

Second, researchers must also be more careful about the relation between the task and
the representation. In the present studies, the difficulty of classification was an interaction
between the particular rule that defined the category and the nature of the stimulus repre-
sentation. Because category learning is also influenced by the way categories are used, it is
also crucial that we explore the interactions between types of representations and category
uses (Markman & Ross, in press).
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