Argument Realization in Fluid Construction Grammar

Luc Steels(1,2) and Remi Van Trijp(1)
(1) University of Brussels (VUB, AI lab)
(2) Sony Computer Science Lab - Paris.

Fluid Construction Grammar is a computational framework for exploring issues in construction grammar. Here we focus on how argument realization is approached in this framework. Although every linguist agrees that there is a strong connection between the semantic representation of a verb and its morphosyntactic behavior, the exact nature of this connection is largely unresolved. In constructional approaches, the argument structure of verbs is not pushed entirely into the lexicon, as in lexicalist approaches, but is partly governed by argument constructions, such as the ditransitive construction, which conventionalise a bi-directional mapping from semantic frames (which combine a set of semantic roles for a particular class of events) to syntactic frames (which combine a set of syntactic roles and a particular class of verbs). Instead of the linking rules found in lexicalist approaches we therefore get a 'fusion' process as suggested by Goldberg. The question addressed here is how this fusion process works.

We present an operational system for the fusion process. The lexical entry of each verb contains a meaning-form mapping. The meaning contains information on the event class and potential semantic roles and the form contains information on the verb class and potential syntactic roles. Constructions select out of this potential valence the roles that they require and they may expand or modulate the meaning and form supplied by the verb. The implementation of all this is complicated but has been achieved within a unification-based feature structure oriented formalism.